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SECTION 1 

Introduction 

An improvement to the Uniform Geometrical Theory of Diffraction (UTD) is devel- 

oped for determining the high frequency electromagnetic fields near the caustic caused 

by the curvature of an edge. This improved solution will be referred to as a caustic 

corrected UTD (CC-UTD). Although the UTD of Kouyoumjian and Pathak [1] cor- 

rectly compensates for the discontinuities of the Geometrical Optics (GO) fields, it 

does not correct for caustics created by a curved edge. In particular, a flat plate with 

a curved edge that is symmetric about a line will create caustics in the diffracted 

fields. A caustic will occur when the source or observation point is in the near-zone. 

In this case, there are two smooth caustics caused by the diffracted rays that form 

a cusp in the plane of symmetry. In terms of the UTD, the two caustics are created 

when two diffraction points merge (coalesce). The cusp of these caustics is formed 

when three diffraction points coalesce. There are two different regions in the plane of 

symmetry. The caustic lit region is the region where there are three distinct diffrac- 

tion points that merge at the cusp. There is just one diffraction point on the other 

side of the cusp. This is called the caustic shadow region. 

In the past, much effort as been spent on analyzing the far-zone diffraction from 

objects with curved edges and curved apertures in plane screens. Many of these 

solutions have been obtained using electric and magnetic current elements that flow 

along the curved edge. These currents are called equivalent currents because they 

represent the distributed effects of the surface current on the faces of the wedge. 

Many far-zone solutions have been obtained using this type of solution. 



Millar [2, 3] used equivalent currents to determine the far-zone transmission of 

a plane wave through apertures in plane screens. Equivalent currents are derived 

and applied to the transmission through a circular aperture in [2]. Later, in [3], the 

transmission through more general curved apertures is discussed and the special case 

of an elliptic aperture is analyzed. 

A similar equivalent current solution was used by Ryan and Peters [4, 5] to obtain 

edge diffracted fields in the axial caustic regions of circular disks and cones. The 

equivalent currents used by Ryan and Peters are not only valid for half-plane diffrac- 

tion but also wedge diffraction. These equivalent currents were also generalized to try 

and account for obliquely diffracted waves. Many other solutions have been obtained 

using the equivalent currents of Ryan and Peters. 

The scattering by a finite cone has been studied extensively using equivalent cur- 

rents. Burnside and Peters [6, 7] analyzed the scattering by a cone using equivalent 

currents to determine the fields in the axial caustic regions and to include higher- 

order diffraction mechanisms. Also, creeping wave excited diffractions on a cone is 

analyzed by Choi, Wang, Peters and Levy [8]. All of these solutions are valid for the 

far-zone scattering of a plane wave by a finite length cone. 

Several heuristic modifications to the Ryan and Peters equivalent currents have 

been proposed. First, Knott and Senior [9], proposed the substitution sin2/3 = 

sinßsin/?' to enforce reciprocity. Next, it was discovered that these equivalent cur- 

rents tend to account for the surface more than one time. Sikta and Peters [10] used 

a modified edge vector to heuristically correct for this problem. This modified edge 

vector is commonly called a stripping vector. Finally, the Ryan and Peters equivalent 

currents are only valid for far-zone diffraction problems. To use this concept to ana- 

lyze near-zone problems, the GTD diffraction coefficients are replaced with the UTD 

diffraction coefficients. This modification was first made by Greer and Burnside [11] 

and later by Albertsen, Balling and Jensen [12]. 

Greer and Burnside [11] used the equivalent current concept in the near-zone 

to predict the high frequency fields in the caustic regions. This solution consists 

of the formulation of a diffraction integral using equivalent currents and numerically 



integrating them to obtain the diffracted field contribution to the total field. Although 

their solution accurately predicts the field in and away from the caustic regions, the 

physical insight that is gained from a ray optical solution is not obtained. Also, this 

solution can take a considerable amount of computer time because the diffraction 

integral is integrated numerically. 

Later; Albertsen, Balling and Jensen [12] developed an equivalent current solution 

and obtained approximate ray optical expressions. Their solution begins with the 

development of a diffraction integral using near-zone equivalent currents similar to 

Greer and Burnside. Next, they develop approximate ray optical expressions by 

making some stationary phase approximations. However, they do not use uniform 

asymptotic techniques so they do not obtain a complete or uniform solution. This 

means that their solution is bounded in the caustic regions, but it does not reduce 

to the classical UTD solution away from the caustic. Therefore, this solution is only 

applicable in the immediate vicinity of the caustics. The classical UTD solution must 

be used away from the caustics. This makes for a cumbersome solution. They are 

also unclear about where and how the two solutions should be blended. 

Although the equivalent current solutions of Greer and Burnside or Albertsen, 

Balling and Jensen do a good job of correcting for the diffracted field caustics, they do 

not account for the regions where the reflection point is near the edge when diffraction 

points are coalescing. This is not a problem in the far-zone because the reflected 

field exists only along the specular direction. This phenomena is not accounted for 

because the equivalent currents are derived for a straight edge and then applied to a 

curved edge. We should not expect these equivalent currents alone to correct for this 

phenomena since a straight edge has only one diffraction point and a curved edge has 

more than one diffraction point in the near-zone. 

In order to correct for the coalescence of reflection and diffraction points, a for- 

mulation must be used that does not use the classical GO fields. In this way, all 

the reflection and diffraction points can be accounted for by the uniform asymp- 

totic expansion. The Physical Optics (PO) integral is typically used for this part of 



the formulation. Once the evaluation of the PO integral has been performed either 

numerically or asymptotically, the contribution from the edge must be corrected. 

One method of correcting for the incorrect edge contribution is to use the Physical 

Theory of Diffraction (PTD). The PTD consists of the PO contribution plus a fringe 

equivalent current contribution that flows along the edge of the wedge. This fringe 

current is obtained by asymptotically integrating the difference between the exact 

diffracted surface currents and the PO diffracted surface currents up to the edge of the 

wedge. A fringe equivalent current has been formulated by Michaeli [13] and Butorin, 

Martynov and Ufimtsev [14] which is valid for far-zone incidence and observation 

locations. These two solutions are commonly known to be identical. 

More recently, the Incremental Theory of Diffraction (ITD) is formulated by 

Tiberio, Maci and Toccafondi [15, 16, 17]. The ITD consists of three integral contri- 

butions. The first of these integrals is the PO surface integral. The remaining two 

integrals are line integrals along the edge of the wedge. These line integrals are used 

to correct for the incorrect edge information of the PO integral. The exact diffracted 

field and the PO diffracted field are localized using a Fourier transform pair. In doing 

so, they obtain incremental diffracted field expressions that are valid in the near-zone. 

Both the PTD and the ITD methods allow for a more complete formulation of 

radiation and scattering problems than the classical equivalent current formulations. 

However, to obtain a ray optical solution to a problem, the PO integral must be 

asymptotically evaluated. If this can not be accomplished, some approximations 

must be made in order to obtain a useful engineering solution. One of the most 

common of these approximations is to assume that the PO surface integral minus its 

edge contribution is the GO field. For near-zone problems, only the ITD can be used 

in this manner since the PTD fringe equivalent currents are derived for only far-zone 

cases. This will result in a solution that is similar to that of Greer and Burnside 

or Albertsen, Balling and Jensen. However, the heuristic modification made to the 

far-zone equivalent currents are not the same as the results of the more rigorous ITD 

formulation. 



The ultimate goal of this report is to develop a useful and efficient solution that can 

be used to solve more complicated electromagnetic radiation and scattering problems 

dealing with the diffraction by curved edges. Curved edges cause caustics in the 

classical UTD ray optical solutions. The work presented in this report is devoted 

to the development of a caustic corrected UTD solution. This means that uniform 

asymptotic techniques are used to obtain a solution in the form of the classical UTD 

except that the information about the caustics is included. One of the requirements 

for a solution to be uniform is that it must reduce to the classical UTD result away 

from the caustics. The solution must also be bounded near the caustic and reduce 

to the known result at the caustic. This is accomplished here. Finally, the resulting 

solution is a very fast and efficient way of computing the high frequency field diffracted 

by a curved edge due to its ray optical nature. 

This solution begins in a way that is very similar to that of Greer and Burnside 

or Albertsen, Balling and Jensen. A diffraction integral is formulated using the In- 

cremental Theory of Diffraction (ITD) recently developed by Tiberio and Maci [15, 

16,17]. These integrals turn out to be very similar to those obtained using near-zone 

equivalent currents. Next, these integrals are asymptotically reduced on the lit and 

shadow sides of the caustic. A uniform asymptotic expansion similar to the one devel- 

oped by Chester, Friedman and Ursell [18] is used to obtain a caustic corrected UTD 

solution on the lit side of the caustic. A uniform asymptotic expansion using classical 

stationary phase techniques is used to obtain a caustic corrected UTD solution on 

the shadow side of the caustic. 

The caustic corrected UTD solution obtained in this report is consistent with 

the classical UTD. The CC-UTD solution smoothly reduces to the classical UTD 

solution of Kouyoumjian and Pathak on both sides of the caustic. Caustic correction 

transition functions are multiplied by the classical UTD solution which allow the 

coalescing diffraction points to properly combine and produce the correct field near 

the caustic. Only one diffraction point remains on the shadow side of the caustic; 

however, the ray field expression includes several different parts to obtain a uniform 

result. The first part of this diffracted field expression consists of the classical UTD 



field expression multiplied by a caustic correction transition function. The remaining 

parts of this diffracted field expression are curvature dependent expressions that are 

not obtainable using classical UTD techniques. These expressions are cast in the 

form of the UTD diffracted field expression multiplied by caustic correction transition 

functions and new curvature dependent diffraction coefficients. 

Chapter 2 of this report is a brief review of the classical UTD. The diffracted 

field caustics and the problems they cause are also discussed. Next, Chapter 3 is a 

derivation of many of the common incremental diffracted field and equivalent current 

expressions. These expressions are derived using a consistent procedure that allows 

for the derivation of incremental diffracted fields consistent with the Physical Theory 

of Diffraction and the Geometrical Theory of Diffraction. These different expressions 

are compared to determine which expression is the best one for the problem to be 

solved here. The formulation chosen is that of the ITD. In Chapter 4, the ITD is 

discussed and the diffracted field contribution is derived by determining the field 

diffracted by a wedge and the Fourier transform used to convert it to the incremental 

diffracted field expression. This result is then asymptotically reduced to obtain a 

closed form expression that is easy to use. 

The field radiated by a source located on a flat plate with a curved edge is derived 

in Chapter 5. The ITD diffracted field integral equation is formulated and asymptot- 

ically reduced on the lit and shadow sides of the caustic. Two geometries are studied 

in Chapter 6 using this solution. First, the radiation by a monopole mounted on a 

fiat plate with an edge defined by a parabolic equation is found. This geometry is 

useful in isolating just the phenomena of interest because it is semi-infinite in extent. 

It is also a simple geometry that gives valuable insight into the physical nature of 

the solution. The CC-UTD is compared with the classical UTD for this geometry. 

Next, the field radiated by a monopole mounted in the center of an elliptic disk is 

determined. This geometry is used to show the applicability of this solution. The 

CC-UTD solution is compared to the classical UTD solution and a Moment Method 

(MM) solution for this geometry. 



Chapter 7 is devoted to the derivation of the more general scattering solution. 

The ITD diffracted field expression is derived and then asymptotically reduced on 

the lit and shadow sides of the caustic to obtain closed form ray optical expressions 

consistent with the classical UTD. In Chapter 8, the field scattered by a flat plate 

with an edge defined by a parabolic equation and the field scattered by an elliptic 

disk are determined. Again, the plate with the parabolic edge is used to illustrate the 

physical nature of the solution and the elliptic disk is used to illustrate the practical 

use of the resulting CC-UTD solution. The CC-UTD solution for the plate with the 

parabolic edge is compared to the classical UTD solution. The CC-UTD solution is 

compared with the classical UTD solution and a MM solution for the scattering by 

the elliptic disk. Finally, Chapter 9 is a summary of the work in this report along 

with some concluding remarks. 

This report also includes several appendices. First, Appendix A is the closed form 

evaluation of three auxiliary integrals used in the determination of the incremental 

diffracted field expressions of Chapter 3. Appendix B is a derivation of the uniform 

asymptotic expansions used to determine the diffracted fields on the lit and shadow 

sides of the caustic. This appendix also proves that the two different expansions are 

indeed uniform. Next, Appendix C contains useful formulas for the calculation of 

the Parabolic Cylinder functions used in the caustic correction transition functions. 

Finally, Appendix D is a derivation of the phase function, diffraction parameter and 

half-plane diffraction coefficient derivatives used in the uniform asymptotic expan- 

sions. 

All of the fields in this work are time harmonic with an assumed time dependance 

of e'ui. This time dependance will be suppressed throughout this report. It will also 

be assumed that the free space wavenumber, k, has a small negative imaginary part. 

This will ensure that the radiation condition is satisfied at infinity. In addition, the 

plates are assumed to perfectly conducting. 



SECTION 2 

The Classical Uniform 
Geometrical Theory of Diffraction 

Many geometries considered in high frequency problems can be evaluated using clas- 

sical diffraction techniques. An important class of these techniques uses the Geomet- 

rical Optics (GO) fields along with diffracted fields to correct them. One of the most 

commonly used diffraction theories is the Geometrical Theory of Diffraction (GTD) 

and its uniform version the Uniform Geometrical Theory of Diffraction (UTD). This 

chapter is a brief overview of the UTD. 

The GTD was developed in great detail by Keller [19] and is a ray optical technique 

that separates the total field into the sum of various types of fields each propagating 

according to its own specific set of rules. For a perfectly conducting wedge, the three 

types of fields used to determine the total field are the incident field, the reflected 

field, and the edge diffracted field. The incident and reflected fields are the same as 

those typically found using GO techniques. The diffracted field derived by Keller [19] 

is valid in the far-zone but does not correctly compensate for the discontinuities of 

the GO fields in the near-zone. Along the incident and reflection shadow boundaries, 

the GTD diffracted field is singular. 

The UTD derived by Kouyoumjian and Pathak [1] corrects for the singularities 

of the diffracted field along the incident and reflection shadow boundaries which the 

GTD does not. Their solution is in the form of the general diffracted ray of the GTD 

except uniform diffraction coefficients are used.  The general solution to a problem 



has the form 

El{P) = E\P) + Er{P) + Ed{P) (1) 

where £'(P) is the incident field at the observation point P and ET(P) is the reflected 

field at P. These are the GO fields. There are also diffracted fields of the form 

Pd(Qe) ,-Jks 

where D(Qe) is a dyadic diffraction coefficient given by 

V{Qe) = -ß'ßD,(Qe) - $'fDh{Q.) (3) 

and E'(Qe) is the incident field at the point of diffraction Qe. The geometry for these 

diffracted rays is shown in Figure 1. This solution is also in the standard ray fixed 

coordinate system where the polarization vectors 

V>   =   T^^r = -^-5- (4a) \s x e\      smp 

Ti cxs        eX5 (A\\\ 

*     =    |ex?'| = sin/3' *■    J 

ß   =   sx$ (4c) 

i9'   =   ?'x^' (4d) 

form a spherical coordinate system about the diffraction point Qe. The rays diffracted 

by the edge will propagate along lines which minimize the distance from the source to 

the edge and to the observation point according to the generalized Fermat's principle. 

The diffraction point can be shown to be located where ß = ß'. It is also clear that 

this distance is minimum for any point on the cone with a half angle of ß. This is 

known as the diffraction cone or the Keller cone and it is shown in Figure 2. 

The UTD diffraction coefficients D,{Qe) and Dh(Qe) corresponding to the soft 

and hard polarizations are, 

I'-*wJ-=7Sb[{-t(4r:)'["i'+(ti 
+ cot(Iir:)i?[*Ii't"(t")]} 



(a) 

(b) 

Figure 1: Canonical geometry for the diffraction by a wedge: (a) oblique incidence 
and (b) top view. 
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Figure 2: Diffraction cone for an obliquely incident wave. 
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T{cot(£i^)J?K,',+<*+>] 
+ cot(1ir")ii'[*i"''r(*+)]}]      (5) 

where $T = ip =p ^'. The Fresnel transition function in (5) is 

oo 

F[x) = 2JVxeJ* f e-**dr (6) 

where 

•±(7,.wp=£^») (7) 
and TV* is the nearest integer satisfying 

2ffnJV± - 7 = ±7T. (8) 

This transition function is used to bound the diffracted field and correctly compensate 

for the discontinuities of the GO fields. The distance parameters L\ Lro and Lr" have 

been obtained for a general curved wedge by Kouyoumjian and Pathak [1]. For the 

cases of interest in this work, the wedge is formed by two flat faces. In this case, the 

distance parameters are 

V = 27° = 27" =     '(ft + ')'fo x sin2ß (9) 

where p\ is the radius of curvature of the incident wave in the edge fixed plane and 

p\ and p\ are the two principle radii of curvature of the incident wave at the point of 

diffraction. A special case of interest here is for a plane wave incident on the wedge. 

For this case, the distance parameters become U = LT° = Lrn = s sin2 ß. 

For the general case of a curved edge, the incident field is diffracted astigmati- 

cally. This means the diffracted field wavefront has two different principle radii of 

curvature. This is accounted for by an amplitude spreading factor in the diffracted 

field expression. This amplitude spreading factor is defined as the square root term 

in (2). The astigmatic tube of rays diffracted by a curved edge is shown graphically 

in Figure 3. Since the diffracted field exists along the diffraction cones, the edge is 

the first caustic of the diffracted field. The second caustic of the diffracted field is pd 
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Source 

Figure 3: Astigmatic tube of rays diffracted by a wedge. 
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and is given by 
±=l_+(s-s').ne 

pd      pe        pg sin2 ß 

where pe is the radius of curvature of the incident wave in the edge fixed plane, ne 

is the unit vector normal to the edge and directed away from the center of curvature 

and pg is the radius of curvature of the edge at the point of diffraction. 

Although the UTD diffraction coefficients do correct the GO fields at the incident 

and reflection shadow boundaries, they do not correct for any problems that may be 

caused by the amplitude spreading factor. The observation point is in the near-zone 

for the case of interest here. This means that it is possible for the observation point 

to approach the second caustic of the diffracted field. When this occurs, the UTD 

diffracted field expression becomes infinite. It also turns out that this happens at the 

same time two or more diffraction points merge (coalesce). 

In an attempt to correct for these caustic problems, various equivalent current 

and incremental diffracted field expressions have been derived. Equivalent currents 

are filament currents that are placed along the edge of the wedge. These equivalent 

currents are then substituted into the radiation integral and integrated along the edge 

to obtain the total diffracted field contribution. An incremental diffracted field is the 

field diffracted by an infinitesimal length of the edge of a wedge. This incremental 

diffracted field is then integrated along the edge to obtain the total diffracted field 

contribution. These techniques will be used in this work to find the field near the 

caustic of the diffracted field. 
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SECTION 3 

Incremental Diffracted Fields 

There are two main approaches used to determine the field diffracted by an infinitesi- 

mal length of the edge of a wedge. The first of these is based on the currents induced 

on the faces of the canonical wedge geometry. This approach is consistent with the 

Physical Theory of Diffraction (PTD). The second approach is based on the field 

diffracted by the canonical wedge geometry. This method is consistent with the Ge- 

ometrical Theory of Diffraction (GTD). 

Many people have worked on the development of the field diffracted by an in- 

finitesimal length of the edge of a wedge from the current point of view. Mitzner [20] 

derived incremental length diffraction coefficients for arbitrary aspects of observa- 

tion using the non-uniform current induced on the two faces of the wedge. Later, 

Michaeli [21, 22] derived equivalent currents for arbitrary aspects of observation us- 

ing the total current induced on the two faces of the wedge. It was then shown by 

Knott [23] that the total current part of Mitzner's solution is identical to Michaeli's 

solution. Both of these formulations suffer from singularities along certain aspects of 

observation. Michaeli [13] rederived his equivalent currents using a different direction 

of integration of the current along the faces of the wedge to eliminate these infinities. 

He also used the non-uniform current and obtained a result with fewer singularities. 

This result was also obtained by Butorin and Ufimtsev [24] for the scalar case and 

by Butorin, Martynov and Ufimtsev [14] for the vector case. The equivalent cur- 

rent formulation of Ando, Murasaki and Kinoshita [25] follows the same procedure 

as Michaeli [13] except a different integration direction is chosen for the integration 
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of the surface current. Shore and Yaghjian [26] derived expressions of a similar form 

that are used to determine the scattering by cracks and struts of reflector antennas. 

A different approach to the derivation of the field diffracted by an infinitesimal 

length of the edge of a wedge begins with the actual diffracted field. Ryan and 

Peters [4, 5] compared the asymptotic form of the diffracted field with the asymptotic 

form of the field radiated by a line source. These expressions were equated and solved 

for the equivalent currents. However, their result is only approximate away from 

normal incidence. Knott and Senior [9] enforced reciprocity to heuristically modify 

the Ryan and Peters solution to improve the method for oblique incidence. This 

formulation has been used primarily for far-zone problems. Later, the concept of 

stripping was used to improve the accuracy of these solutions. A separate field based 

formulation is that of Arnold [27]. He assumes a double spectral integral formula and 

compares its asymptotic result to that of the GTD. This is then used to solve for the 

unknown argument of the integral. The most recent field based derivation is that of 

Tiberio and Maci [15, 16, 17]. This method uses a Fourier transform pair to convert 

the field diffracted by the canonical wedge geometry into the field diffracted by an 

infinitesimal length of the edge. 

These methods are all very different in formulation, but are all used to describe 

the same physical phenomena. Therefore, there should be some consistent method 

for formulating them all in the same basic manner. This chapter is devoted to the 

development of a unified formulation of the field diffracted by an infinitesimal length 

of the edge of a wedge. This is accomplished by deriving the PTD equivalent currents 

from the current on the faces of the wedge. This is then transformed to obtain the 

field based GTD equivalent currents. Finally, all of these solutions are compared. 

1 Double Spectral Integral Formulation of the 
Field Diffracted by an Infinitesimal Length of 
the Edge of a Wedge 

In the determination of an incremental diffracted field, it is typical to find the field 

diffracted by an incremental length of an infinite two dimensional wedge.   This is 
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usually accomplished by integrating the exact surface currents of each face of the 

wedge up to the edge. This is the procedure that will be used here except the result 

will be put in a general form that will allow for an easy comparison between the 

various formulations. This section is a derivation of the double spectral integral form 

of the field diffracted by an infinitesimal length of the edge of a wedge. 

The magnetic field scattered by an object is easily found [28, 29] as, 

H°(R) = JJvGo(R,R') x JS(R') ds' (11) 
s 

where G0{R,R') is the scalar free space Green's function and JS(R') is the induced 

surface current. For the specific case of the field scattered by the 0-face of a two 

dimensional, perfect electrically conducting wedge as shown in Figure 4, 
oo    oo °° 

H>(R) = j JvGo(R,R') x Jt(R') dx'dz' = / dHl{R), (12) 
-oo   0 -°° 

where the incremental magnetic field scattered by the 0-face of an infinitesimal length 

of the edge is 
*■' 00 

dHZ(R) = dz'JvG0(R,R') x J°{R') dx' (13) 
0 

and J°{R') is the surface current on the 0-face of the wedge. The spectral domain 

form of the scalar free space Green's function is 

Go(i,äl) = 4^±fl =    1    // e-itM-RM-^l,» **, (14) 
v        '    ATT\R-R'\     %*23Ji *y 

where 

V       (15) 

-J7*2 + *2 - fc2     ;Xk2<kl + k*z 

is to be used here. The gradient of the scalar free space Green's function is define in 

cartesian coordinates as 

where ^ 
dG0{R,R') = zi 7/ ke-JM*-*')+M*-*')+*,rlvl] dkxdkz^ ^ 

dx Sir2 JJ    x ky 

Ky 
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Figure 4: Canonical geometry for the scattering by a wedge. 
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dG0{R,R') _ -1  If    ,   -j[fc,(,-x')+*,(*-*')+*y|yn dk*dk* (18) 
 0y       " 8^ II £yy                                   K 

— 00 

and 
dG0{R,R') = ZL][ k e-iM*-*')+M*-*,)+*»lvD dfej:<*fe' (19) 

öz       8TT
2
 yy z Ay 
—oo 

with ev = sgn {y} = sgn {sin ^}. Since the O-face of the wedge lies in the x-z plane, 

J°{R') = xJ°x{R') + zJ°z(R'). (20) 

Substituting (16) through (20) into (13) and interchanging the order of the spectral 

and spatial integrals, 

i l   7f rfu u . >\dh^hi äW) = i*'£]JJr(kM^ <*> 

where 

/(*,, kz; z') = / F(kx, k2; R') e^*** dx', (22) 
0 

h(kx,kz;R') = kx(x - x') + kz{z - z') + ky\y\ (23) 

and 

F(kx,kz]R') = s[-jeykyJ°z(R')]   +   y[jkxJ°z(R')-jkzJ°x(R'j\ 

+   z[jeykyJ°x{R')]. (24) 

Next, the surface current on the O-face of the wedge must be found.  Since the 

O-face of the wedge lies in the y = 0 plane, 

Jt(R') = n0 x #(£')U (25) 

where n0 = y is the unit normal vector to the O-face of the wedge and Hl{R') is the 

total magnetic field. Therefore, we find that 

J°X{R') = HKR')]^ = in{&')\~ (20) 

and 

J°2(R') = -HX(R')\      = -Hl(R')\ „ (27) 
itf—u p=x' 
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are the x- and z-components of the 0-face surface current, respectively. The incident 

wave is assumed to be planar for the remainder of this chapter; however, the procedure 

used here can be applied to other incident wave types. The components of the surface 

current are determined from the expressions for the exact fields in the presence of a 

wedge. The z-components of the total electric field and the total magnetic field in 

the presence of the wedge are [30], 

El(R) = Ei(0)e-jkz'cosß' [u{kpsinß\ tf") - u(kpsinß', tf+)] (28) 

and 

B*X(R) = Hi(Q)e-**™ß' [u(kpsin/?', *") + u(kpsin/?', ¥+)]; (29) 

respectively, where $* = if; q= 1>' and the function u(X, 9) is 

u(X,V)   =   -+-E(ir/nJm/n(X)cosf-$) (30) 
n     n m=1 \n    J 

_       1      t   sin^y*008* 
-    2^/co.(i)-oo.(J)^ (31) 

The contour of integration in (31) is shown in Figure 5. Substituting (29) into (26) 

and using the fact that fTJ(O) = H'ß,(0) sin /?', we can find the x-component of the 

surface current as 

J°X{R') = 2Hi
0l(O)e-*z'cosl3' smß'u{X,j>'), (32) 

where X = kx'sinß'. Also, due to the cylindrical uniformity of the wedge, the 

transverse components of the total magnetic field can be determined from the z- 

components using [31] 

BUR) = jj^VtHl(R) + ^z x VtEl(R) (33) 

which allows us to determine the p-component of the total magnetic field as 

Using (29) and the fact that H'z(0) = 5^,(0) sin ß', we find that 

dHl(R) 
dX 

= 2HU0)e-**'™t'sin/3' ÖU^f] 
^     —w *™r       dx (35) 
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Figure 5: Contour of integration for the exact wedge solution. 
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cr'cosy 

-—a sin 7—- 

/\ 

Figure 6: Change of integration direction along the face of a wedge. 

and using (28) and £*(0) = H^(Q)Zeanß'f 

dEi(R) 
9f l/i=0 

= -2H^)e-jk*'cosß'Zcsmß> 5ü^Ö. (36) 

Therefore, substituting (35) and (36) into (34) the z-component of the 0-face surface 

current is given by 

(37) 

dX 

where again X = foe' sin ß'. 

The integration along a strip of infinitesimal width in the x' direction will be 

changed to an integration along an arbitrarily directed strip as shown in Figure 6 in 

an attempt to make the final result as general as possible. The change of variables 

x a- sm7 

z' —> z' -f a' cos 7 

dx' -> 
dX 

ksinß' 
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(39) 

(40) 



is used to reorient the integration along the face of the wedge to be in an arbitrary 

direction. Therefore, substituting (39) into (32) we obtain the x-component of the 

surface current 

J°(R')   =   2Hi
ß,{0)e-jkz'cosß'e-jXcot'/cotß'smß'u(X,i>') 

=   2 [ß' ■ H^z')] e~iX«a»^«*"' sinß'u(X,tf) (41) 

and substituting (39) into (37) we obtain the z-component of the surface current 

J°Z(R')   =   2j4,(0)e-^'co^'e-^
cot^ot^'cos^^^ 

+   *3 *#{»)* e x      Q^, 

=   2j [ß' ■ H\z')\ e-*«*v**r cos/3' ^^ 

+   2j [f. H\z')] es*««**' x-^W1' (42) 

This change of variables also results in the change X = kar' sin 7 sin ß'. Using this 

result and the change of variables of (38) and (39), (23) becomes 

/fcx sin 7 + fezcos7 \ , ,_N 

h(K,K;X) = ,(*.^')-x{'kZ^ß'   ) (43) 

where 

q(kx, K; z') = kxx + kz{z - z') + ky\y\. (44) 

Next, substituting (41) through (43) into (22) we get 

T(kx,kz;z')   =   ^{^[ß'-Wiz'ile^cotß'U, 

+y (-2 [ß> • H>(z')} £ cotß'U2-2 [? • H\z>)] ^ U3 

+z Uj [ß' • friz')] ey ^ Ux\ I c-«*-*-^) (45) 

where the auxiliary integrals are defined as 
00 

Ü! = ] u{X,i>'yx<dX, (46) 
0 
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and 

with 

o 

c = kx sin 7 + (kz — k cos ß') cos 7 

(47) 

(48) 

(49) 
k sin 7 sin ß' 

It is found in Appendix A that the closed form endpoint contributions (i.e., the 

contribution from the edge) of the auxiliary integrals (46) through (48) are 

1 
tfi = - 

j sin a 
G°h(«), 

U2 = - cot a G°h{a)- 
1 
n 

(50) 

(51) 

and 

U3 = G°(a), (52) 

respectively.   The functions G°h(a) are the spectral diffraction coefficients of the 

0-face of the wedge 

W = s cot ^HH^2) (53) 

for the soft and hard polarizations and a = cos-1 £ where £ is given in (49). The 

proper definition of the inverse cosine function is given in (594) and (595) of Ap- 

pendix A. Lastly, the cartesian-to-spherical coordinate transformation 

x = r sin ß cos ij) + ß cos ß cos if>— ij> sin ij) 

y = r sin ß sin. iß+ ß cos ß sin ij>+ ip COST/} 

z   =   f cos/? — /?sin/3 

(54) 

(55) 

(56) 

is used in (45) to convert the answer into the standard spherical ray fixed coordinate 

system. The resulting solution can now be written in the standard dyadic form 

dHt(R) = H\z') ■ g"(z') dz' (57) 
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where ^ 

SV) = £ Jj f («w, *,; *>-*-■«-)+«] ^. (58) 
-oo 

The amplitude function of this double spectral integral is a dyadic of the form 

K{kx,kz;z')   =   -ß'f Kß.r(kx,kz;z') -$'r K^r(kx,kz;z') 

-ß'ß Kß,ß(kx, fcz; z') - $'ß K^ßih, fc2; z') 

-ß'$ Kß.<,{kx,kz;z') - $'$ K^(kx,kz;z') (59) 

where the terms in the dyadic are: 

{k k 
2 £y -£ sin ß cos ^ cot ß' cot a - 2 y sin ß sin ^ cot ß cot a 

feisin^sinV>_2    ^cosgl 
fe       sin a «   sinaj 

J       fey sin ft cos ji cot ft' _    fc* sin ß sin V> cot ft'l . 

\   £y fe n fe «• J 
X-    (k   k-z')   -    f2

fexSin^sinV> fe, sinffcosjfl (      } Kvr{kx,kz,z) - yk   sin/3,     Z£vk   sinß>  j^w ^   ; 

{fe fe 
2 ey -^ cos ß cos V> cot ß' cot a - 2 y cos ft sin ^ cot ß' cot a 

fc2 cosftsinV» ky sinftl       ,  , 
k       sin a fe  sin a J 

f       fe„ cos ft cos V> cot ft'        feg cos ft sin V> cot ft')       ^^ 

\    £y fe 71 fc W J 

X-    rfc   k-z'\   -   J2^ cos^sin^ _2e h. cosßco^\G°(a) (60d) 

{fc fc 
-2 ey-^ sin V» cot ft' cot a - 2 y cos ^ cot ft' cot a 

+ 2^Wa) 
fe  sin a J 

f   2£ fc„ sinV>cotft'     2K cosV>cotft'| ^ 

\       v fc n fc n        J 

This is a convenient form of the solution because it allows for an easy comparison 

between the incremental diffracted field solutions consistent with the PTD and the 
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GTD. It is also convenient because if we compare (58) with (14), we see that they 

both have a very similar form. Therefore, (58) may be interpreted as a spherical 

wave propagating outward from a point z' on the z-axis. Each of these spherical 

waves are weighted differently for each co-polarized and cross-polarized diffracted field 

component. These weighting functions are related to the soft and hard diffraction 

coefficients as expected. 

This result is similar to that of Arnold [27] except for a few key points. The result 

obtained by Arnold is only a scalar formulation. Also, Arnold's result is obtained us- 

ing a different procedure which assumes that the integral along the edge is performed 

first and then the spectral integrals. For this case, he concludes that the amplitude 

function of this integral need only contain information along the Keller cone direc- 

tions. This is true because once the integral along the edge is performed, the spectral 

integrals have dominant contributions near the Keller cone directions. According to 

the method of stationary phase, the spectral integrals can be approximated using only 

the values of the integrand near the Keller cone directions. Therefore, the information 

about the fields along the Keller cone directions can be continued to other directions 

with little change in the resulting solution. 

Although this formulation is mathematically precise, it is practical for only a few 

specific problems. It is assumed that the integral along the edge can be done in 

closed form. This can be done only for simple geometries. In order to encompass a 

wider class of problems, it is desired to determine a closed form result for the spectral 

integrals and leave only the integral along the edge. This can not be accomplished 

using Arnold's procedure. 

2    Incremental Diffracted Fields Consistent with 
the Physical Theory of Diffraction 

The procedures used to determine PTD equivalent currents are used here to obtain the 

field diffracted by an infinitesimal length of the edge of a wedge. This is accomplished 

simply by asymptotically reducing (58) to obtain a closed form result. In this section, 

26 



an asymptotic expression for the incremental diffracted field from the total surface 

current is determined. 

It should be noted that the PTD method uses the non-uniform current to correct 

the Physical Optics (PO) current near an edge. This non-uniform current is usually 

asymptotically integrated up to the edge of the wedge to obtain a fringe equivalent 

current. The PO current subtracted from the total current is the non-uniform current. 

The expressions derived in this section correspond to the total current component 

of the fringe equivalent current written in diffracted field form. Also, (57) will be 

evaluated assuming a far-zone observation point. In this way, simpler formulas are 

obtained which makes the comparison with the incremental diffracted field that is 

consistent with the GTD much easier. 

The asymptotic expansion of (58) begins by determining the stationary phase 

point of the double spectral integral. It is a straightforward and simple exer- 

cise to show that the stationary phase point of (58) is located at (kxa,kzs) = 

(ksmßcosi},kcosß). It is also easy to show that k2 > k2
xa + k2

za and therefore (15) 

evaluated at the stationary phase point is 

kys = £{,&sin/3sinV'. (61) 

The asymptotic expansion of (58) using the double integral stationary phase method [32] 

is 

—oo 

 / K(kxa, kza; Z')e-M^^') (62) 
iirkyay/\AB - H2\ 

where it is assumed that ~K(kx,kz]z') is a smooth and slowly varying function of kx 

and kz near the stationary phase point. This is valid for far-zone observations. The 

phase a, of the asymptotic expansion is defined as 

i 

<r = < 

+1 

-1 

-3 

if AB > H2 and A > 0 

if AB > H2 and A < 0 (63) 

if AB < H2 
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where the functions A,B and E are 

d2q(kx,k2]z') 
A = - 

dkl 
>0, 

B = - 
d2q(kx,k2]z') 

dki 

{kx,kz)={kx.,kx.)      
ksm ^ 

_ T (sin2 ß sin21/; + cos2 ß) 

\kx fix) =(*x» >KZI ) 

(64) 

(65) 

respectively.  Also, r is the radial distance between any point on the edge and the 

observation point. Using (64) through (66) it is a simple task to show 

and 

H 
d2q(kx,kz;z') 

dkxdkz 

k sin2 ß sin2 ip 

T cos ß cos ip 

1 *ys 
(67) 

>J\AB-H2\       r 

and that AB > H2 and A > 0 which, from (63), leads to the fact that u = +1. 

Lastly, evaluating (60) 

T(kxs,kzalz')   =   -ß'ß |2 ^ G£(a)} - *'* |2 £| ^(a)} 

/5' ? Jo s*n ^ (cos^ co^^ — cos a co*^') 
sma G£(«) 

- 2 
sin /3 cot ß 

n 
'■) 

(68) 

and (44) 

q(kxs,kZ3;z') = kr (69) 

at the stationary phase point, all the quantities in (62) are completely determined. 

Therefore, the far-zone asymptotic expansion of (57) is 

^, ,. e~jkr 

where 

dHZ(R) ~ Hl(z') • V(z') -A dz' 

^--wf2^^}-*'*^^} 

(70) 

-ß'$ ji sin /3 (cos ^ cot ß — cos a cot ß') 

- 2 
sin ß cot /? 

71 :) 

sma G°h(«) 

(71) 
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and 

a = cos 
-1 / «MW    ,    (COB ß- COB ß') 1 (?2) 

\    sin/3' sin/3' 7J* 

Again, the proper definition of the inverse cosine function is defined in (594) and (595) 

of Appendix A. It is now a simple task to compare this solution with other existing 

equivalent current and incremental diffracted field solutions. 

If the orientation of the integration strips along the face of the wedge is normal 

to the edge (i.e., 7 = |) we get the solutions of Mitzner [20] and Michaeli [21, 22]. 

Recalling the fact that Mitzner used the non-uniform current in his solution, the field 

from the total current was shown by Knott [23] to be the same as that obtained by 

Michaeli. As discussed by Michaeli, this solution predicts singular fields for certain 

aspects of observation. To eliminate most of these singularities, the orientation of the 

integration strips is changed. 

By reorienting the integration along the face of the wedge to be along the direction 

of the grazing diffracted ray (i.e., 7 = ß') the solutions of Michaeli [13], Butorin and 

Ufimtsev [24] and Butorin, Martynov and Ufimtsev [14] are obtained. The paper by 

Butorin and Ufimtsev is a scalar version of the more general vector electromagnetic 

solution of Butorin, Martynov and Ufimtsev. It is also commonly understood that 

the solution of Butorin, Martynov and Ufimtsev is identical to that of Michaeli. In all 

three of these solutions, the non-uniform current is used. However, if the solutions in 

these papers were performed using the total surface current, we obtain the solution 

found in this section with 7 = /3'. 

Another direction of integration of the strips along the face of the wedge is pro- 

posed by Ando, Murasaki and Kinoshita [25]. The direction they propose is the 

projection onto the half-plane of the difference between the directions of observation 

and the Keller cone. Although this choice of directions does produce an equivalent 

current with no singularities, it has no physical meaning since the current flows in 

the 7 = ß' direction. 

29 



3    Incremental Diffracted Fields Consistent with 
the Geometrical Theory of Diffraction 

The important difference in the formulation of the incremental diffracted fields that 

are consistent with the PTD and the GTD is the choice of the coordinate system for 

the spectra. The PTD incremental diffracted field, as derived in Section 2, was found 

using a cartesian spectral integration. On the other hand, the GTD incremental 

diffracted field can be obtained by converting the cartesian spectral integration to a 

spherical spectral integration. This section is devoted to the conversion of the double 

spectral integral in (58) from cartesian coordinates to spherical coordinates. This is 

then asymptotically reduced to obtain a closed form result. 

To obtain the proper variable substitution, we recall from (49) and (594) that 

. kx sin 7 + (kz — k cos 8') cos 7 
£ = cos a   =    -^ :—  

k sin 7 sin p' 

- ih-+^-h^')^-        (73) 

If this equation is used to define the coordinate transformation, we can choose 

kx = k sin ß' cos a (74) 

and 

k2 = kcosß' (75) 

for our substitutions. This is easily recognized as two of the three variable changes 

from cartesian coordinates to spherical coordinates. Using a standard spherical coor- 

dinate transformation, we find 

ky = fc sin/?'sin a (76) 

as the remaining variable change. It is important to understand that integrating 

the spectra in cartesian coordinates is the same as integrating the projection of the 

spherical spectra on the kx-kz plane. Therefore, the infinitesimal area of the projection 

is [33] 

dkxdkz = ksmß'dadß'. (77) 
Ky 
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This completes the required variable substitutions. However, to avoid confusion, 

a dummy variable substitution of ß' -» 8' will be used. Therefore, the change of 

variables becomes 

kx = k sin 8' cos a (78a) 

ky = k sin 0' sin a (78b) 

jfez = kcosO' (78c) 

^^ = ksm&dadd'. (78d) 

Next, to obtain a convenient and standard result, the directions of integration of both 

spectral integrals are reversed 

j^) = _L Jj J{kx, k2] z>)e-K**+**l*-*')+*M) *£*!. (79) 
oo 

The contours of integration must now be properly mapped. The contour of in- 

tegration in the 8' plane is simple to determine. The angle 8' is real between 0 and 

7T from the spherical coordinate transformation. The remainder of the contour is 

mapped into the complex 8' plane from — joo —> 0 and ir -* 7r + joo. This contour of 

integration is shown in Figure 7. 

The contour of integration in the a plane requires more care. The result in (57) 

through (60) expresses the radiation from a narrow strip of current on the 0-face of 

the wedge in free space. Therefore, this result no longer has any explicit information 

about the 0-face. It is important to take this information into account when making 

the transformation. 

To attain the correct transformation, the condition that the field scattered by 

each strip on the 0-face of the wedge must be invariant under reflection. Therefore, 

the range of ip and TJ)' must be restricted to be 0 < ip,if>' < x which makes ey = +1. 

Once the transformation is made under this condition, the angles ip and ip' can be 

analytically continued for all possible angles. 

Recall that the integration of the spectra in cartesian coordinates is the same as 

the integration of the projection of the spherical spectra on the kx-kz plane. Also, the 

spherical spectral integration is only performed over the upper hemisphere because 
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Figure 7: Contour of integration in the 6' plane. 
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i Im a 

Re a 

Figure 8: Contour of integration in the a plane. 

ey = +1. Therefore, the angle a is real between 0 and 7i\ Again, the remainder of 

the contour is mapped into the complex a plane from — joo —» 0 and 7r —* ir + joo. It 

is also important to remember that this is an incremental diffracted field and so the 

contour of integration must be properly indented such that none of the Geometrical 

Optics (GO) poles are crossed by a deformation of the contour of integration to its 

steepest descent path. The contour of integration depends on the location of both the 

GO poles and the saddle point; however, an example of this contour of integration is 

shown in Figure 8. 

Using the change of variables of (78) in (79), the resulting solution can be written 

in the standard dyadic form 

g-°{z') = g^r / / Ks(6',a; Z')e-''W'^') sin 6' da d6' (80) 
Cßt Cot 
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and 

g(6', a; z') = cos 6' cos ß + cos(a - iß) sin 6' sin ß (81) 

where 0 < iß, iß' < it and the contours of integration Ce> and Ca are shown in Figures 7 

and 8, respectively. From (60), the amplitude function of this double spectral integral 

is a dyadic of the form 

Ts(6', a; z')   =   -0'f KpT{6', a; *') - #'f Jfyr(0', a; *') 

-ß'ßKßlß(6',a]z') -^,'ßK^ß{&,a;z') 

-ß'j> Kß>xl,{6',a.;z') -$'$ K^(9',a]z') (82) 

where the terms in the dyadic are: 

Kpr(6',a;z')   =   2 {sin/3 cos 0'cos (a - iß) - cos ß sin 9'} G°h(a) 

f   suxßcosd'   .  ,        ,.1 ,00 , 
+ < 2 —-  sin(a - iß) \ (83a) 

K^r(9',a;z')   =   -2 sin ßsin(a-iß) G°s{a) (83b) 

K0,ß(6',a;z')   =   2 {cosß cos 9'cos(a - iß) + sinßsin 9'} G°h(a) 
{„ cos/3 cos 0'   .   . , .1 .„„ . 

2 -  sin(a - iß) > (83c) 

K^0(9',a-:z')   =   -2 cos ßsin(a-iß) G°(a) (83d) 

K^{9',a-,z')   =   2 cos 6'sin(a-iß) G°h(a) 

+ 1-2 ^— cos(a - iß) 1 (83e) 

ÜT^(Ö',a;z')   =   2cos(a-V0G:(a) (83f) 

The angle iß can not be analytically continued since the saddle point in the a plane 

is located at as = iß. The saddle point would move outside the range of integration if 

this result was analytically continued. Therefore, a second change of variables should 

be made to shift the saddle point location in the a plane to a constant. 

To transform this integral to an integral with a typical diffraction integral con- 

tour, let us assume the medium is slightly lossy so that k possesses a small negative 

imaginary part. The contour of integration in the a plane can now be deformed from 

Ca to Ta as shown in Figure 8. Next, we use the change of variables 

a - iß = 7T - £ . (84) 

34 



Alm* 

7T Re £ 

and 

Figure 9: Contour of integration in the ( plane. 

da = — d£ (85) 

which maps the contour of integration Ta to the negative of the contour C( shown in 

Figure 9. Finally, changing the direction of integration in the £ plane, the solution 

can now be written in the standard dyadic form 

dHd
0{R) = Hi{z').G°{z')dz' (86) 

where 

and 

g-°(z') = £-. J I K,(6\ ft J)e-W**) sin & % iff (87) 

g(0\ ft *') =cos 6> cos ß -cos £sin &sin 0 (88) 
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with the contour of integration in the £ plane being shown in Figure 9. The amplitude 

function of this double spectral integral is a dyadic of the form 

%{V,l\>t)   =   -ß'TKß,r{e',bz')-$'rKvr{e'^z') 

-ß'ß Kß,ß(6',h z') -f'ß K^{e\ft z') 

-ß'$ KM6', ft z') -f'f K^{6', i; z') (89) 

where the terms in the dyadic are: 

Kß'r{8\£;z')   =   -2 {sin ß cos &' cos £ + cos ß sin 9'} G°h(£) 
f   sin ß cos 6'   .   .1 

+ <2—^  sinM (90a) 

KvT{6',Z;z')   =   -2 faß an £&,(£) (90b) 

Kß>ß{6',£',z')   =   -2 {cosß cos 6' cos(- sinßsin 0'} <$£(£) 
{_ cos/3 cos 0'   .   .1 .^ . 

2 -  sinO (90c) 

Kvp{6',£;z')   =   -2cosßsm£G°{£) (90d) 

KM?, b z')   =   2 cos & sin £ G°h(i) + 2 ^- cos £ (90e) 
TO 

JW',£;*') =  -2 cos^CO (90f) 

and the new spectral diffraction coefficients are 

-1 
GUO    2n -H^-H^2) (91) 

for the soft and hard polarizations. Since the saddle point in the £ plane is located at 

(a = 7T, the angles ip and ifr' can now be analytically continued for angles greater than 

7T. An important note at this point is that the new spectral diffraction coefficients 

in (91) for the 0-face of the wedge are identical to those found by Michaeli [34]. 

In order to compare this solution to the solution found in Section 2 it is convenient 

to convert the integral in (87) to a double stationary phase integral. To accomplish 

this, we again assume the medium is slightly lossy so that k possesses a small negative 

imaginary part so that the contour of integration in the 8' plane can be deformed from 

Ce> to Te' as shown in Figure 7. Finally, changing the variables of integration 

&   -»   ß + jS (92) 
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£     ->     T + JV 

d6'd(   ->   -dSdu 

(93) 

(94) 

in (87) results in the double stationary phase integral 

p(z') = ZJL jj Ka{ß + j8,7T + jV; 2>-^+**W) sin(/3 + j«) <K <b/     (95) 

where 

- jfcr5(/3 + j8, v + jV; z') = -fcr/i(S,"! *') + J^rf{S, v\ z'), (96) 

h(8, u; z') = sin ß cos /3 sinh 5(1- cosh u) (97) 

and 

/(£, v; z') = - cos2 /3 cosh 5 - sin2 ß cosh i/ cosh 5. (98) 

It is a simple task to show that the stationary phase point is located at (8B, vs) = (0,0). 

As was done in Section 2, the high frequency expression of (95) will be found 

assuming a far-zone observation point. Therefore, using the double integral stationary 

phase method [32] 

—o-sin/3 
G°{z') 

±KTyj\AB - H2 =J?.(/9,ir;*>~ifcPff(/',,r!'') (99) 

where it is assumed that ~Ka{ß+jS,ir-\-ju] z') is a smooth and slowly varying function 

of 8 and v near the stationary phase point. This is valid for far-zone observations. 

Also, a is defined in (63) and the functions A,B and H are 

,      92f(S,u;z') 

B = 

(M=(o,o) 

d2f(S,u]Z') 
du2 

= /(0,0;z') = -l<0, 

= -sin2
/S 

(M=(o,o) 

and 
„     d2f(S,u;z') 

88 dv 
= 0, 

(«,i/)=(0,0) 

respectively. Using (100) through (102) it is a simple task to show that 

y/\AB-H2\     sin0 
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and that AB > H2 and A < 0 which, from (63), leads to the fact that a = -1. 

Lastly, evaluating (90) 

Ts(ß,T;z') = -ß'ß {2G°h{-K)}-i,'$ {2G°{*)}-ß'j, {-2^} (104) 

and (88) 

g(ß,w;z') = l (105) 

at the stationary phase point, all the quantities in (99) are completely determined. 

Therefore, the far-zone asymptotic expansion of (86) is 

dHd
0{R) ~ H\z') ■ 3{z') ^- dz' (106) 

47T7* 

where 

V{z') = -ß'ß {2GZ(x)}-£'$ {2&M}-ß'f {-2^}. (107) 

To allow for an easy comparison between this solution and the solution found in 

Section 2, we recognize that 

<?:» = G^fr) (108) 

where G°h{a) are the diffraction coefficients defined in (53) that were used in Sec- 

tion 2. Therefore, (107) can be written as 

V(z') = -ß'ß {2G°h{j>)}-j,'i, {2G0M)}-^ |-2^} (109) 

where this is now in a form that allows for an easy comparison with the results in 

Section 2. 

This result is very similar to the GTD equivalent currents that are derived from 

a field point of view. The equivalent currents of Ryan and Peters [4, 5] were derived 

for the case where ß = ß' = |. These equivalent currents were then heuristically 

generalized for oblique incidence by Knott and Senior [9] by enforcing reciprocity. 

Rewriting this result in the form of an incremental diffracted field we obtain the 

same expression as that in (106). Also, since it can be shown that the double spectral 

integral representation of (86) is identical to the one obtained by Tiberio and Maci [15, 

16,17], the asymptotic expression in (106) is also. Therefore, the derivation of Tiberio 

and Maci is a rigorous derivation of the Ryan and Peters result with the heuristic 

modifications of Knott and Senior. 

38 



4    Comparison  of Incremental  Diffracted  Field 
Solutions 

Since the PTD and GTD incremental diffracted fields are all derived from the same 

point of view, we are now in a position to compare the results of each of the different 

formulations. This section is a comparison of the PTD and the GTD incremental 

diffracted fields. The advantages and disadvantages of each is also discussed. 

The double spectral integral forms in cartesian and spherical coordinates produce 

the same results in this form. Therefore, if we follow the procedure proposed by 

Arnold [27] and the integral along the edge is performed first, both spectra will 

produce the same result. However, as discussed earlier, it is rare to work a problem 

in which the integral along the edge can be done in closed form. This means that 

Arnold's procedure is not very practical. The most practical incremental diffracted 

field solution is obtained by asymptotically reducing the spectral integrals. 

The only difference between the various PTD solutions is the direction taken 

for the integral of the current along the faces of the wedge. The most physically 

meaningful direction for this integration is that of the grazing diffracted ray as pointed 

out by Michaeli [13] and Butorin, Martynov and Ufimtsev [14]. This produces a result 

that predicts fields off the Keller cone. It is yet to be shown what the significance of 

using this type of formulation has in the near-zone. 

The GTD incremental diffracted field can be obtained from the PTD incremental 

diffracted field by restricting the observation point to lie on the Keller cone. It is 

then reasoned that according to the method of stationary phase the integral along 

the edge is dominated by the contribution near the Keller cone direction. Therefore, 

the information about the fields along the Keller cone directions can be continued 

to other directions with little change in the resulting solution. The main advantage 

of this type of formulation is that a near-zone incremental diffracted field can be 

obtained. For this reason, the incremental diffracted field formulation of Tiberio 

and Maci [15, 16, 17] will be used for the remainder of this work. A more detailed 
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derivation of the near-zone diffracted field contribution of the ITD is performed in 

the next chapter. 
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SECTION 4 

The Diffracted Field Contribution 
of the Incremental Theory of 
Diffraction 

The derivation of the diffracted field contribution of the Incremental Theory of Diffrac- 

tion (ITD) consists of several steps. First, the exact expression for the field diffracted 

by the canonical wedge problem is determined. Next, a Fourier transform pair rela- 

tion is derived. This is then used to find the field diffracted by an infinitesimal length 

of the edge of the wedge. Finally, this expression is asymptotically reduced to obtain 

a closed form expression that permits its easy application to more general geometries. 

This is the procedure developed by Tiberio and Maci [15, 16, 17]. This chapter is 

a more complete discussion of the ITD as opposed to Chapter 3 which is a deriva- 

tion of the diffracted field contribution of the ITD. The diffracted field contribution 

formulated in this chapter is obtained using the procedure proposed by Tiberio and 

Maci [15, 16,17] and not from the current as was done in Chapter 3. This chapter is 

devoted to the discussion of the ITD method and the development of the near-zone 

diffracted field contribution of the ITD. 

1    The Incremental Theory of Diffraction 

The ITD is a recently proposed method for determining electromagnetic fields. The 

ITD consists of three separate field terms as formulated by Tiberio and Maci [15, 16, 

17]. This section is devoted to a discussion of the ITD. 
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The ITD consists of one surface integral contribution and two line integral contri- 

butions. The surface integral is the integral of the field radiated by an infinitesimal 

patch of the surface. This surface integral is taken to be the Physical Optics (PO) in- 

tegral. To compensate for the incorrect edge contribution of the PO integral, the PO 

edge contribution is subtracted out and a more accurate diffracted field contribution 

is added. These are the two line integrals. 

Tiberio and Maci propose the use of a Fourier transform pair to obtain the con- 

tributions from an infinitesimal length of the edge. This consists simply of Fourier 

transforming the solution for the infinite wedge case. This results in incremental con- 

tributions that can be written in terms of incremental diffracted fields corresponding 

to the PO diffraction and the exact diffraction by the wedge. 

Although all three of these contributions are required for a complete ITD solution, 

very good results can be obtained by only including the diffracted field contribution 

and the classical Geometrical Optics (GO) fields. Since the PO integral without its 

edge contribution is essentially the GO fields, the PO and PO edge contributions 

can be determined approximately using the classical GO theory. Although these 

contributions are not identical, the difference is small for most cases. For this reason, 

the field calculations for the remainder of this work will consist of the GO fields being 

generated using classical GO techniques and the diffracted field being generated by 

the incremental diffracted field contribution of the ITD. 

2    The Canonical Wedge Solution 

The derivation of the diffracted field contribution of the ITD begins with the exact 

solution for the field diffracted by an infinite straight edge of a wedge with two flat 

faces. This geometry is shown in Figure 10. This section is a brief derivation of 

the exact diffracted field in vector form. This solution is written in a form that is 

convenient for the remainder of the ITD diffracted field solution. 

An important and useful fact about the total field exterior to a cylindrically sym- 

metric geometry with a plane wave incident is that the transverse field components 

can be completely determined from the axial field component. For the geometry of 
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Figure 10: Geometry for the canonical wedge. 
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Figure 11: Contour of integration for the canonical wedge geometry. 

interest here, this means that the total field in the transverse directions can be deter- 

mined from the z-components of the electric and magnetic fields. The z-components 

of the electric and magnetic fields were derived by Pathak and Kouyoumjian [31] and 

are 

EZ{P) = -Ei 
2nj J G,(t)ej> jktpcost d( 

h-V 

and 
.-i*i*' 

HZ{P) = -H'2 ^- J Gh{i)^"c^ di, 

(110) 

(111) 
L-V 

respectively; where k\ = kcosß' and kt = ksiaß'.   Also, the spectral diffraction 

coefficients are 

GsAO = s{-( m (112) 

where 9* — if) q= i])'.   The contour of integration for the field expressions in (110) 

and (111) is shown in Figure 11.  The total electric field exterior to the wedge can 
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now be written as 

Eo0(P) = Et(P) + zEz(P) (113) 

where Et(P) axe the transverse field components of the total electric field. This is 

shown by Pathak and Kouyoumjian [31] to be related to the z-components of the 

electric and magnetic field 

Et(P) = ^jVtEz(P) + ^zx VA(P) (114) 

where 

v'-%+*}W (115) 

It is a simple task to show that the derivatives with respect to p of the z-components 

of the electric and magnetic fields are 

=   -Eie-f^h-   f cos£Ga{OeiktpcOBtd( (116) 
L-L' 

and 

|*(P) = -ic^/ft«) {£*"-«}« 
L-L' 

=   -HI e-ik*2'^ J costGh(Oejktpco°td£, (H7) 
L-L' 

respectively.  The derivatives with respect to rj; of the z-components of the electric 

and magnetic fields require more care. The differentiation process begins with 

jh^=~E* eS.L {& °-(f)l •*""* *     (118) 

Next, we recognize that 

L-L' 

which makes (118) 

ld_ 
pdij) 

S o^O-J o.(0 ("") 

Ez{p)=~K~2^r I \kG'®\*    di-      (120) 
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This integral is now in a form that can be easily evaluated using integration-by-parts. 

Using integration-by-parts 

/u — dx = uv — l v — dx (121) 
dx J     dx 

and noting that the values of the integral at its endpoints is zero, (120) becomes 

1 d ■ e~jk*z'    r ( d     L      A 

L-L' 

=   -E\e-^z'^-   f rin£G,(0e*"eo,«# (122) 
L-L' 

which is the derivative of the z-component of the electric field with respect to Y> as 

desired. The derivative of the z-component of the magnetic field with respect to ij) is 

-—Hz(P) = -Hie-jk*z'^-   ! smiGh{t)e?ktpcost di (123) 
' 27T    J pdij) 

L-L' 

following a similar procedure. Noting that E\ = Eß, sin ß', Hl
z = — j- E1^ sin ß' and 

using the coordinate transformation 

p = rsinß + ßcosß (124) 

z = fcosß-ßsmß , (125) 

the resulting solution will be in the standard ray fixed coordinate system. Substi- 

tuting (114), (116), (117), (122), (123) into (113) and simplifying, we obtain an 

expression for the total electric field given by, 

Äo(P) = E\Q') • 2^7 / 7oo{i,ß')e-ikrmß']di (126) 
T3 L-L' 

where 

fit, ß') = cos ß cos ß' - cos £ sin ß sin ß'. (127) 

Also, the dyadic Foo(£,ß') is given by 

Eo(£,/?')   =   -ß'fFß,r{£,ß')Ga{£)-^rF^{£,ß')Gh{£) 

-ß'ßFß,ß{£,ß') G.{£) - fßFvßit*?) GH(0 

-frfFp+W) G,(Z) - j'JFMCß') GH(0 (128) 
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and the terms in the dyadic are: 

Fß'r(£,ß') = sin ß cos ß' cos f + cos ß sin ß' (129a) 

FfrW) = -sinySsin^ (129b) 

Fß>ß{£,ß') = cosßcos0'cos£- sin/3sinß' (129c) 

*V/J&0') = -cos/3sin£ (129d) 

Fß^,ß') = cos/3'sin£ (129e) 

FMt,ß') = «>s£ (129f) 

To obtain only the diffracted field contribution of the total field, we begin by 

closing the contour of integration. This is accomplished by including the steepest 

descent paths through the points £ = ±x as shown in Figure 11. Now, if we define 

the contours C = L - V + Ta + T2 and Td = I\ + r2, the total electric field is 

-   E\Q'). ±, I!«>{(,ß')e-ikTmß,)di. (130) 

It is shown by Pathak and Kouyoumjian [31] that the integral on the contour C 

produces the GO fields and the integral on the contour Yd produces the diffracted 

field. Finally, the field diffracted by a wedge with a plane wave incidence is 

Ei(P) = -E\Q') • ^p J7oo((,ß')e-jkrmß,)d( (131) 

where /(£,£') and ?«>(£,/3') are given by (127) and (128), respectively. 

3    The Fourier Transform 

The next step in the development of the ITD diffracted field expression is the deriva- 

tion of a specialized Fourier transform pair. This is used to obtain an incremental 

quantity from the infinite wedge solution of Section 2. This section is devoted to 

the derivation of the Fourier transform pair used by Tiberio and Maci [15,16, 17] to 

obtain this incremental quantity. 
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It is necessary at this point to make some assumptions about the desired form of 

the resulting solution. It is assumed here that the diffracted field can be written in 

the form, 

H(P) = I Id{z')e-jkz'cosß'dz' (132) 
—oo 

where Id(z') is an incremental quantity yet to be found. This quantity is determined 

by recalling the traditional Fourier transform pair: 

oo 

A(x)   =     f B(a)e-jaxda (133a) 
—oo 

B(a)   =   ^- f A(x)eiaxdx (133b) 
—oo 

Next, comparing (132) and (133a), we obtain the change of variables 

(134a) 

(134b) 

(134c) 

(134d) 

that will allow us to use the Fourier transform pair in (133) to determine Id(z'). Thus, 

substituting (134) into (133b), 

I\z') = ■=- f Ei(P)^eotß'd{cosß') (135) 
27T J 

—oo 

is the unknown incremental quantity. The variable of integration is changed to ß' to 

put this result in a more convenient form. The dummy variable 6' is used to avoid 

confusion. Finally, the desired Fourier transform pair is: 

oo 

Ei(P)   =   J Id(z')e-jkz'cosß'dz' (136a) 
—oo 

Id(z')   =   — f EiiP) sm8'ejkz'COB6'do' (136b) 
27T J 

where the contour of integration in the 6' plane is shown in Figure 12. 
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a =   z' 

X =   k cos/?' 

B(a) = iV) 
A(x) = Ei(p) 



ime* 

Reö' 

Figure 12: Contour of integration for the 9' plane integral. 
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4    Formulation of the Diffracted Field Contribu- 
tion of the Incremental Theory of Diffraction 

The next step of the ITD diffracted field formulation is simply to use the Fourier 

transform pair developed in Section 3 to convert the solution of the infinite wedge of 

Section 2 into the field diffracted by an infinitesimal length of the edge. This section 

develops the final ITD diffracted field expression and converts it into a convenient 

form for its use on more general problems. 

Although (136) is a valid form for the ITD diffracted field, it is not the most 

convenient. The Fourier transform pair in (136) can be written in the more convenient 

form, 
oo 

E\P) = J dE\z') (137) 
—oo 

with 

dEd{z') = dz'e-jkz'cos0'^- f Ei(P) sin 0V'*z'cose'<£0' (138) 
2ir J 

where dEd(z') is the field diffracted by an infinitesimal length of the edge as desired. 

Since this expression is for an infinitesimal length of the edge, the edge can be changed 

to any general edge geometry. Thus, substituting (131) into (138) we obtain for any 

general shaped edge, 

Ed(P) = JdEd{l) (139) 

where Ce is the contour along the actual edge, 

dEd{l) = -dl E\Q') ■ ^-r j jFoo(£, 6') sin 6'e-jkrW>dtd6' (140) 

and 

fit, 9') = cos ß cos 0' - cos ( sin ß sin B'. (141) 

Also, the dyadic JFoo(£,0') is given by 

Eotf,*')   =   -ß'TFß,T{W)Gs{i)-^'rF^{W)Gh{i) 

-ß'ßFßlß{W) G.iO-ji'ßF^W) Gh{i) 

-ß'fFwU,?) Ga(0 - ^F^iU') Gh{() (142) 
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and the terms in the dyadic are: 

Fß'r(t,6') = sin/3cos0'cos£ + cos/3sin0' (143a) 

FMW) = - sin/? sin £ (143b) 

Fß>ß{i,8') = cos/3cos0'cos£-sin/3sin0' (143c) 

FMt>0') = - cos^ sin^ (143d) 

Fß^{U') = cos 0'sin £ (143e) 

FMW) = cos£ (143f) 

This concludes the derivation of the diffracted field contribution of the ITD. In order 

to make this expression easy to apply, we wish to asymptotically reduce it to obtain 

a closed form expression. 

5 The Asymptotic Expansion of the Diffracted 
Field Contribution of the Incremental Theory 
of Diffraction 

Although the ITD diffracted field expression in (140) is valid, it is useful for only a 

small set of problems in this form. To apply this to a wider class of problems, we wish 

to obtain a closed form expression that will leave only the integration along the edge. 

This is accomplished here by asymptotically reducing (140) for high frequencies. This 

section is a derivation of this closed form result. 

We begin by asymptotically reducing the integral in the £ plane. It is a simple 

task to show that (140) has saddle points located at £, = x for the contour I\ and 

(a = -IT for the contour T2. The dyadic ^«,(£,0') in (142) can be simplified if it is 

assumed that (143) is smooth and slowly varying near the saddle points, this means 

Fpr{t.,V) = sm(6'-ß) (144a) 

*Vr(e.,«0 = 0 (144b) 

Fß>ßU„6') = -cos(0'-/?) (144c) 

FMts,8') = 0 (144d) 
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*W(6,«')   =   0 (144e) 

*W(6,*')   =   "I- (144f) 

Therefore, (140) is given approximately by 

dEd(l) ~ dl E\Q') ■ A / 1^(0') sin e'e"^"»ß«**tf (145) 

where 

^cc(ö') = -^'fsin^'-^W^ + ^'/Öcos^'-^W^^O + ^^Wi,^')      (146) 

and 

Wa,h{6') = ^JGg,h(0eifcrsin/3sine'CO8e <*£. (147) 

Next, if we substitute (112) into (147) and let n = kr sin /?sin 6' and Ägi/, = =pl, (147) 

becomes 

W-^   -   4^/"'(^J «*—« 
+   4^/-* t^) •*-«« 

4xjn J        \    2n    ) 

These integrals have been evaluated by Pathak and Kouyoumjian [31] assuming n ^> 1 

by using the Pauli-Clemmow modified method of steepest descent which results in 
g-j'ir/4    e—jfcrsin^sinfl' 

where 

fir1)'I**™]} 
{cot(^)i?[Ma+(*+)1 

+ cot 

=F' 

+ cot 
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and L = r sinßsin 6'. The functions F[x] and a±{^) are defined in (6) and (7), 

respectively. Thus, substituting (146) and (149) into (145) and simplifying, we obtain 

the integral 

dEd{l) ~ dl E\Q') ■ J Poo(0')e-i*rco,(''-/5)«0/ (151) 
-e' 

where 

3,~e~iT/4   I fcsinö' Poo(ö')   =   -^f^Wf^sin(ö'-/3) #.(<?') 
27T   V2n"rsinp 

and Da,h(Q') is given in (150). 

Finally, the integral in the 6' plane must be asymptotically reduced. First, the 

contour of integration Ce> is deformed to its steepest descent path Se> as shown in 

Figure 12. Also, it is a simple task to show that the integral in (151) has one saddle 

point located at 6's = ß. The classical method of steepest descent can be used if we 

assume that Poo(0') is a smooth and slowly varying function near the saddle point 

6's. Therefore, we obtain a closed form asymptotic expression using the method of 

steepest descent [32] and assuming kr > 1, 

E\P) = j dEd(l) (153) 

where Ce is the contour along the actual edge and 

dE\l) ~ E\Q') ■ {ß'ßD,(Q') + $'j>Dh{Q')} ^T dl (154) 

is the diffracted field contribution of the ITD. In doing so, the distance parameter 

becomes L = rsin2/3. This is the same result obtained by Tiberio and Maci [15, 16, 

17]. For the remainder of this work, the geometries of interest will be restricted to 

curved edges of fiat plates. In this case, we can set n = 2 and simplify (150) to 

D„H(Q') = \ j 
F[kLa(*-)}^F{kLa(9+)}\ 

cos [Sz.) cos [S±)    J 
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where 

a(^) = 2cos2(^p\. (156) 

This result is now in a very simple form consisting of only the integral along the edge 

of the wedge. 
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SECTION 5 

The Radiation by a Source on a 
Flat Plate with a Curved Edge 

A wide class of problems studied in electromagnetics is the radiation of a source on 

a flat plate. Caustics of the UTD diffracted field will occur if the edge of the plate is 

curved. The UTD fields must be corrected to account for the caustics to accurately 

determine the field radiated by the source in those regions. A caustic corrected UTD 

solution that can be used to determine the field diffracted by the curved edge of a 

flat plate with a source located on it is derived in this chapter. 

1    Problem Formulation 

Two main topics must be addressed when formulating a caustic corrected UTD solu- 

tion for determining the field near the caustics of waves diffracted by curved edges. 

First, the canonical geometry must be chosen to be the simplest structure containing 

the phenomena of interest. The method of solution must also be determined. This 

section is a discussion of the canonical geometry and the method used to obtain a 

solution for the radiation by a source on a fiat plate with a curved edge. 

The phenomena of interest here is the coalescence of three diffraction points. 

Therefore, the canonical geometry to be used should contain no more than three 

diffraction points. Although a disk is often used as a canonical geometry, it has 

either two or four diffraction points depending on which region the observation point 

is in.  However, this geometry would unnecessarily complicate the solution because 
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there is one more diffraction point than is needed for studying this phenomena. This 

occurs because the disk is finite in extent. The simplest geometry that contains the 

phenomena of interest is the curved edge of a semi-infinite flat plate. Once the CC- 

UTD has been developed for this geometry, the solution can be applied to the disk 

due to the high frequency localization property of electromagnetic fields. 

It is also important to consider the mathematics involved with the geometry in 

order to obtain a tractable solution.  The scope of the solution is narrowed for the 

purposes of this work.  The procedure used to obtain a solution here can be used 

to obtain a more general solution. However, to study the phenomena of interest, it 

is assumed that the edge of the plate is symmetric, the source lies along the axis 

of symmetry and the far-zone observation point is also in the plane of symmetry 

of the edge of the plate. This geometry is chosen so that the diffraction points are 

symmetrically located and equally spaced. A procedure similar to the one developed 

here can be used to obtain a solution if the diffraction points are not equally spaced. 

The ITD developed by Tiberio and Maci [15, 16, 17] will be used in this work 

to obtain a caustic corrected UTD solution. The ITD contains three different com- 

ponents as discussed in Section 1 of Chapter 4. The first term is a Physical Optics 

surface integral. This integral can be formulated by using the spectral domain form of 

the scalar free space Green's function, interchanging the spectral and spatial integrals 

and performing the spatial integrals. This results in a double spectral integral form 

of the PO integral. Upon doing so, it can be seen that the PO integral contains three 

double integral stationary phase points and a branch point of order — |. Although 

it should be theoretically possible to obtain a uniform asymptotic expansion for this 

type of integral, it is not possible using existing theories. Also, since the phase func- 

tion would have to be mapped to a fourth order polynomial that is a function of two 

variables, the canonical integral would have an extremely complicated form. In fact, 

this integral would be no simpler to compute than the original PO integral.   This 

defeats the purpose of the asymptotic expansion. Therefore, we wish to make some 

approximations in order to obtain simpler integrals. 
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As discussed in Section 1 of Chapter 4, the PO surface integral minus its edge 

contribution is approximately the Geometrical Optics field. This approximation is 

valid as long as the reflection point is not near the edge when the diffraction points 

coalesce. This is the same as saying that the caustic boundaries can not be close to the 

incident or reflection shadow boundaries. This will be assumed here. Therefore, the 

only remaining contribution of the ITD is the diffracted field component. The total 

ITD field will be approximated by the GO field and the diffracted field contribution 

of the ITD integrated along the edge of the plate. The diffracted field contribution 

of the ITD is derived in Chapter 4. 

Only one single integral appears in this solution. The resulting formulation is sim- 

ple enough in form to allow for the uniform asymptotic expansion of the diffracted 

field integral equation. The canonical integrals used in this expansion are standard 

and well tabulated functions. This is an attractive feature of any asymptotic expan- 

sion. 

2    Diffraction Integral Formulation 

An integral equation must be formulated that can be asymptotically expanded to 

obtain a caustic corrected UTD solution. The ITD will be used in this work to obtain 

this diffraction integral. This section is a derivation of the diffracted field integral 

equation used to obtain a caustic corrected UTD solution. 

Some assumptions must be made to obtain a usable diffracted field integral equa- 

tion. First, as discussed in Section 1, the incident and reflection shadow boundaries 

can not be close to the caustic boundaries caused by the curvature of the edge since 

only the diffracted field contribution of the ITD is to be asymptotically expanded 

here. Next, recalling that the ITD diffracted field in Chapter 4 was obtained by 

asymptotically expanding a double spectral integral assuming that kr sin2 ß ~> 1, 

this must also be enforced here. Finally, it will be assumed that the curvature of the 

edge is symmetric and the source location and the observation direction lie in this 

plane of symmetry as discussed in Section 1. This geometry is shown in Figure 13. 
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Figure 13: Canonical geometry for the diffraction by a curved edge. 
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In order to use the ITD formulation, it is important to note that the ITD result 

is reciprocal. Since the ITD was formulated for plane wave incidence and a near-zone 

observation point, this can be assumed here and then reciprocity used to obtain the 

radiated field. The ITD diffracted field as derived in Chapter 4 is 

E\P) = jdE\l) (157) 

where Ce is the edge contour and 

dEd(l) ~ #(Q') • {ß'ßD,(Q') + i>'$Dh{Q')} ^T dl (158) 

is the electric field diffracted by an infinitesimal length of the edge of the wedge. The 

half-plane diffraction coefficients given by 

are to be used since only flat plates are being considered. Also, the angle parameter 

o($:F) is given by 

o(tf*) = 2cos2f^) (160) 

where $T = ip =F $\ the distance parameter is L = rsin2 ß and F[x] is the UTD 

Fresnel transition function defined in (6). 

We begin by noting that ip = 0 for all the diffraction points on the edge since the 

observation point is located on the plate. Therefore, ^ is a constant and DS(Q') = 0 

for all the diffraction points on the edge. Using these facts, (157) reduces to 

E\p) = -0— | [£*'(0) • #'] ^f^- e*[-''-fH dl (161) 

where E{(0) = $'c E
1^ + ß'c E'ßc. Also, from (4b) of Chapter 2 we know 

f' = ^r -    (162) smp' 

which makes (161) 

+  M±J {ft ■ P x H} ^ ^'K'---] 61. (163) 
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Using a vector identity and noting that s' is orthogonal to ij)'c and ß'c, 

i>'c-[exs']   =   e-[rx$'e]=e-ß'e = -e-z (164) 

ß'c-[exs'}   =   e-[s'xß'c] = -e.j,'c. (165) 

The contribution corresponding to (165) integrates to zero since it is an odd function 

of arc length. It is now advantageous to change the variable of integration to be along 

the x direction which converts (163) to, 

&(P) = #<i- / [-e . x] M2 e*[-?-'.-r)   *L dXe (166) 
27T J rsin/r dxe 

— 00 

where the Jacobian of the transformation is 

dl       -1 
dxe      e - x 

from (761) of Appendix D. Finally, 

(167) 

1    °° 
E\P) = ^4c — J ^(ase) e>*fct*«) dxe (168) 

— oo 

where 

h(xe) = -s'-re-r (169) 

and 

TM = 5^. (170) 
r sm p' v     ' 

This completes the derivation of the diffracted field integral equation. This integral 

must now be asymptotically expanded to obtain closed form results for both the lit 

and the shadow sides of the caustic. 

3    The Uniform Asymptotic Expansion of the Diffracted 
Field Integral Equation in the Caustic Lit Re- 
gion 

Although the diffracted field integral equation derived in Section 2 can be numerically 

integrated to predict the field diffracted by a curved edge, it is advantageous to obtain 
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Figure 14: Reciprocal ray geometry for the diffraction by a curved edge in the caustic 
lit region. 

closed form expressions. One way to accomplish this is to asymptotically expand the 

integral at high frequencies. This section is devoted to the asymptotic expansion of 

the diffracted field integral equation for the lit side of the caustic. 

In the caustic lit region, there are assumed to be three symmetrically located 

diffraction points as shown in Figure 14. This ray structure occurs because of the 

assumed symmetry of the edge, source location and radiation direction. A uniform 

asymptotic expansion must be used when these diffraction points are nearly coinci- 

dent. The uniform asymptotic expansion derived in Section 2 of Appendix B can be 

utilized with these assumptions in mind. 

First, TO = 0 in (614) of Appendix B because the integrand of the integral in (168) 

does not contain a zero at the central stationary phase point. Also, as explained 

in Section 1 of Appendix B, if the integral has three real stationary phase points 

then p = -i) where fi = sgn{hIV(xc)} and 77 = sga{hn(xc)}. Finally, it is assumed 
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that k ^> 1 and J-(xe) is a smooth and slowly varying function of xe about the 

central stationary phase point. From (657) of Appendix B the diffracted field integral 

equation in (168) can be approximated as 

E\P)   =   f E^±- I F{xe)e*h^ dxe 

2?r 

kha(xe) 

2TT 

kh"(xnc) 
e-iW4ei*A(^c)Tnc^5 Vi o)       (171) 

where the argument of the transition functions is 

£ = V^MMZnc) " k(xc)} =-J'3JJX/4 (172) 

from (626) of Appendix B. It is easily shown using (753a) and (764a) of Appendix D 

that the value of the phase function is 

h(xc) = -sc (173) 

at the central stationary phase point and using (756a) and (765a) of Appendix D that 

the value of the phase function is 

h{xnc) = -s' • re{Qnc) - sr (174) 

at the non-central stationary phase points. The argument of the transition functions 

becomes 

-J3JJ*-/4 
* = y/2k[-s' • re(Qnc) - snc + sc] (175) 

using these in (172). Also, from (753c) and (764c) of Appendix D the second derivative 

of the phase function is 

hlI(xc) = - 
1 1 

— + (176) 
L*c     Pd{Qc)\ 

at the central stationary phase point and from (756c) and (765c) of Appendix D the 

second derivative of the phase function is 

2 
hlI{xnc) = -sm2ßn 

Snc        pd{Qnc)\   \e-x) 
(177) 
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at the non-central stationary phase points. Next, the value of 7/ is 

pd(Qc) 
7] = sgn{hu(xc)} = -sgn 

i 
(178) 

Mpd(Qc) + sc 

The last items required for the uniform asymptotic expansion are the amplitude 

functions evaluated at the central 

MQc) T{xc) = 

and non-central 

^"(Snc) = 
Dh{Qnc) 

(179) 

(180) 
sncsin/3nc 

stationary phase points.  Finally, substituting (173), (174) and (176) through (180) 

into (171) and simplifying, we obtain 

#(P) ~ gwJ-ywj^ffi.j 0-Jkse 

+   E\Qtc) • D (Q+) pd(Qic) 
Vnc[pd(Q+) + ^ 

+ #(<?-) • D (Q-c) 
AQnc) 

B-jkSnc 

B—jkSnc (181) 
\SnC\pd{Qnc) + *nc) 

as the asymptotic form of the diffracted field on the lit side of the caustic. The caustic 

distances pd(Q%c) and pd{Q~c) are equal because of the symmetry of the geometry. 

Therefore, pd(Qnc) = Pd(Qtc) = Pd(Qnc) ^ be used *or tlie remainder of this chapter. 

The dyadic diffraction coefficients for the central and non-central diffraction points 

are 

and 

D (Qc) = -$'J>Dh(Qc)Tc(t,0) (182) 

D"{Qnc) = -VV A,(Qnc)rnc(£,7/,0), (183) 

respectively. The diffraction coefficient Dh(Qe) is identical to the UTD half-plane 

diffraction coefficient. Also, the caustic correction transition functions Tc(£,0) and 

Tnc{i,V>Q) are tnose defined in (655) and (656) of Appendix B, respectively. 

Two important facts can be observed about the result in (181). It was observed 

that the uniform asymptotic expansion consists of the non-uniform expansions for the 
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Figure 15: Caustic lit region diffracted ray geometry for the radiation by a source on 
a flat plate with a curved edge. 

central and non-central stationary phase points multiplied by the transition functions 

Tc(£,0) and Tnc(£,7/,0), respectively. This is also true for the diffracted field as 

expected. Also, since the non-uniform contributions and the transition functions 

form a reciprocal result we can use this fact for the case where the source is located 

on the plate. 

We are now in a position to use reciprocity to obtain the field radiated by a source 

on the flat plate. The radiated field ray structure shown in Figure 15. To obtain the 

reciprocal set of diffracted field expressions, we begin by noting that the factor ^—, 

where i2c is the distance from the central diffraction to the far-zone point, has been 

suppressed in the plane wave incidence case. This factor must be reintroduced in 

order to obtain the standard ray optical form. Also, a and if> must be interchanged 

with s' and if)', respectively. Next, the amplitude spreading factor must be rewritten 
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as 

\ s[pd + s]        s' 

where the caustic distance is now determined using (10) of Chapter 2.   The field 

radiated by a source on a flat plate can be rewritten as 

{„—jks'c ")      j i  p—jkRc 

#(0) ^-| • D (Qc)vWc) -^ 

l nc     J 
p-jfc[flc-«-re(QnC)] 

+ 

X 
Re 

+ £'(0)^-|-D (Q;c)y/7(Qr :) 

X 
2-ifc[Rc-T-fe(Q„c)] 

(185) 

-Rnc (186) 

where the far-zone approximation 

Re - s • fe(Qnc)        ; for phase terms 

Re ; for amplitude terms 

be used to rewrite the diffracted field expression in the standard form. Also, RnC is 

the distance from the non-central diffraction points to the far-zone point. Therefore, 

the field radiated by a source on a flat plate is 

B-jkRc 

can 

T I    p~JK- 

E\P)   ~   E\QC) ■ D (Qc)yJpd(Qc) -£ 

+  Ei{Qtc)^{Qtc)^f7{^) 

+ E\Q-nc)^{Q-nc)y[ÄqZ) 

0—jkRnc 

Rnc 
0—jkRnc 

(187) 

which is again consistent with the UTD diffracted field expressions. The dyadic 

diffraction coefficients used here are those given in (182) and (183) except the recip- 

rocal forms of £ and Dh(Qe) must be used. Substituting (184) into (178) we find 

that 
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where pd(Qc) is found using (10) of Chapter 2 and 

f = yj2k[s.re(Qnc)-s'nc + s'c}  e^3^4 (189) 

for use in the caustic correction transition functions. Next, using reciprocity and 

recalling that the source is located on the face of the plate, 9* = q=V- Substituting 

this into the hard polarized half-plane diffraction coefficient we obtain, 

''"•'^"S^1       (i9o) 
where 

L = s'sm2ß, (191) 

a(V>) = 2cos2^ (192) 

and a factor of | has been included because the incident and reflection shadow bound- 

aries overlap. 

4    The Uniform Asymptotic Expansion of the Diffracted 
Field Integral Equation in the Caustic Shadow 
Region 

The field in the caustic shadow region must also be determined in order to obtain a 

uniform asymptotic expression for the diffraction by a curved edge. This asymptotic 

expansion must be performed in a way that is consistent with the expansion on the 

lit side in order to obtain a uniform result. This section is devoted to the asymptotic 

expansion of the diffracted field integral equation for the shadow side of the caustic. 

It is assumed that only one diffraction point exists in the caustic shadow region as 

shown in Figure 16. This occurs because the two non-central diffraction points have 

coalesced and disappeared. The uniform asymptotic expansion derived in Section 3 

of Appendix B can be utilized with these assumptions in mind. 

First, m = 0 in (614) of Appendix B because the integrand of the integral in (168) 

does not contain a zero at the central stationary phase point. As explained in Sec- 

tion 1 of Appendix B, if the integral has one real stationary phase point and two 
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Figure 16: Reciprocal ray geometry for the diffraction by a curved edge in the caustic 
shadow region. 
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complex conjugate stationary phase points, then fi = rj where ft = sgn{hIV(xc)} and 

7/ = sgn{Ä"(sc)}. Finally, it is assumed that k > 1 and T{xe) is a smooth and 

slowly varying function of xe about the central stationary phase point. From (673) 

of Appendix B the diffracted field integral equation in (168) can be approximated as 

E\P)   =   *<^/^)e«"»4 

2TT 
e?n*/4eikh(*e)T.(£,0) 

kh"(xc) 

+     $&,   1 1^.  J3r,T/4Jkh(xc) 
+   V**'2r2\kh"{xe)\W* 

x {?u{*c) + J C{xc)?{xc)} T,(£, 2) (193) 

where the function C(xc) is defined as 

3|M°(sc)l     feIV(se) 

and the argument of the caustic correction transition functions is 

t = y/2k[h{xnc) - h(xc)] -JTfir/4 

(194) 

(195) 

from (626) of Appendix B. It is easily shown using (753a) and (764a) of Appendix D 

that the value of the phase function is 

h(xc) = -sc (196) 

at the central stationary phase point and using (756a) and (765a) of Appendix D that 

the value of the phase function is 

h(xnc) = -a' • fe(<5„c) - aT (197) 

at the non-central stationary phase points. The argument of the transition functions 

becomes 

£ = ,-W (198) yf2k[-s>.re(Qnc)-snc + ac} 

using these in (195). Also, from (753c) and (764c) of Appendix D the second derivative 

of the phase function is 

hu(xc) = 
J_ 1 
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at the central stationary phase point which makes 

7] = sgn{hlI{xc)} = -sgnj- Pd(Qc) 

) 

The next item required for the uniform asymptotic expansion is 

(200) 

(201) 

which is the amplitude function of the integral evaluated at the central diffraction 

point. It is now advantageous to write C(xc) in terms of the derivatives of the phase 

function with respect to arc length. Therefore, recalling (764c) and (766) from Ap- 

pendix D we find that 

C(xc) = C(lc) - 4^(QC) 

where 

C(h) 
Z\kh»{lc)\     h™{lc) 

(202) 

(203) 
\t\2 hll(h) 

and hu(lc) and hlv(lc) are given in (753c) and (753e) of Appendix D, respectively. 

The final quantity required for the use of the uniform asymptotic expansion is the 

second derivative of the amplitude function of the integral with respect to xe. Differ- 

entiating (170) twice with respect to xe and evaluating the second derivative at the 

central diffraction point, we obtain 

<Psmß' 
7  ^ ~ 7, ~~dxT^ 

Dh(Qc) J ^r 
dxl 

+ sc dxl ) 
(204) 

where (767a), (767b), (779a), (779b), (810b) and (811) have been used to simplify the 

result. Finally, substituting (196) and (199) through (204) into (193) and simplifying, 

we obtain 

E\P) ~ ^.nm^c{p;£<>+sc] 
pd(Qc) 

+   E\QC)-V (Qc) 
AQc) 

-jksc 

B-Jk»c (205) 
\ *c [/(Qc) + SC) 

as the asymptotic form of the diffracted field on the shadow side of the caustic. The 

dyadic diffraction coefficients at the central diffraction point are 

D (Qc) = -$'J>Dh(Qc)T,(t,0) 
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and 

V (Qc) = -f'fVH(Qe)T.{t,2), (207) 

where the caustic shadow region caustic correction transition functions T8(£, 0) and 

Tt((,2) are denned in (674) of Appendix B. Also, Dh(Qc) in (206) is the UTD 

half-plane diffraction coefficient for the hard polarization. The diffraction coefficient 

Vh(Qc) in (207) is given by 

v^=^{w^',(-)+ic(^H^;     (208) 

where C(xc) and Tll(xc) are defined in (202) and (204), respectively. This expression 

can now be written in terms of the derivatives with respect to arc length as 

Vh(Qc)   = 
><jk{ 

_e-jV/4 1 

«M vsar'-^+jcctw«.) 

where 

FlVc) = 
1   *Dh{Q') 

dl2 

-n2JQc)Dh{Qc) 

Dh(Qc)  (cPr 

,. *      I dl2 

ScPd(Qc) 

'pd(Qc) + *c 
(209) 

+ ^c 
d?smß' 

Qc 
dl2 

Q, } (210) 

and C(lc) is given in (203). Next, by substituting (767c), (779c) and (812) into (210) 

we obtain 

_e-J*-/4 

■V/^TTÄ 
Softie)     = 

cPDh(Qc) 
dl2 

-*<«•>{? I1-* COS^c 

PAQC) 
-K

2
(QC) cos2 Ü ■} (211) 

where Dh(Qc) is the hard polarized UTD half-plane diffraction coefficient and tPD^Q^ 

is given in (812) of Appendix D. Therefore, substituting (211) into (209) we obtain 

which is the new curvature dependant diffraction coefficient. 

(212) 
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Figure 17: Ray geometry for the diffraction by a curved edge in the caustic shadow 
region. 
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We are now in a position to use reciprocity to obtain the field radiated by a source 

on the flat plate. The radiated field ray structure shown in Figure 17. To obtain the 

reciprocal set of diffracted field expressions, we begin by noting that the factor e~*Re t 

where Re is the distance from the central diffraction to the far-zone point, has been 

suppressed in the plane wave incidence case. This factor must be reintroduced in 

order to obtain the standard ray optical form. Also, s must be interchanged with s'. 

Using (184), we can rewrite (205) as 

,-ikRc 

&{P) ~ j#(0) ^ y^{Qc)yf?m 
Re 

V(0) — J • V (Qc) yf^m — (213) 

where the caustic distance pd(Qc) is given by (10) in Chapter 2. Recognizing that the 

incident field is now a spherical wave 

,-jkRc 

Ed(P)   ~   E\QC) ■ D (Qc) y/p*(Qc) 
Re 

+ &m-^(Qc)\iit{Qc)£^- (2i4) 

which is again consistent with the UTD diffracted field expressions. The dyadic 

diffraction coefficients used here are those given in (206) and (207) except the recip- 

rocal forms of £, Dh(Qc) and T>h(Qc) must be used. Substituting (184) into (200) we 

find that 

77 = -sgn{/(C?c)} (215) 

where pd(Qc) is found using (10) of Chapter 2 and 

t ^2k[s-Te{Qnc)-S'nc + s'c]    e-^/4 (216) 

for use in the caustic correction transition functions. Next, using reciprocity and 

recalling that the source is located on the face of the plate, \PT = ^fif). Substituting 

this into the hard polarized half-plane diffraction coefficient we obtain, 

MQc) = ^^ sec (^j FMfi&c)] (217) 
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where 

a(V>c) = 2cos2^ (218) 

and a factor of \ has been included because the incident and reflection shadow bound- 

aries overlap. Finally, it is necessary to determine the reciprocal form of T>h{Qc) given 

in (212). By interchanging tj)c with i/;'c, sc with s'c and recalling that the source is lo- 

cated on the face of the plate we obtain 

+ n2
g(Qc)sm^c-\c(lc))} 

H1    P9(Qc) 

(219) 

where pd(Qc) is found using (10) of Chapter 2 and Dh(Qc) is given in (217). Also, 

C(lc) is given in (203) where the reciprocal forms of hll(lc) and hlv(lc) are 

-1 
hn(h) = 

Pd(Qc) 
(220) 

from (753c) of Appendix D and 

hlV(lc)    =     [<(Qc)-^(Qc)](l + COsVc) + 

1 

<m 

K)3 

12 

1- 
PÄQc) 

(221) 

from (753e); respectively, where again pd(Qc) is found using (10) of Chapter 2. Finally, 

substituting (818) into (814) of Appendix D we find that 

^»-"^(qT^JTW.) 
where 

Din\Qc) = 
-e-j«/4 

sec 
(*) 

FAKWc)] 

(222) 

(223) 
2V27T& 

and a{ij)c) is given in (218). Also, a factor of | has been included in (223) because 

the incident and reflection shadow boundaries overlap. Substituting (217), (222) 

and (223) into (812) of Appendix D we obtain 

<PDh(Qc) fcos^c(l-cosy>e)\ n(ii),n s 
dl2 
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+ 
2{s'cy 

l- 
p,{Qc)i «Y 

l- 
PAQC). 

x [Dh(Qc) - D{H\QC)] (224) 

which is the last item required for the curvature dependant diffraction coefficient 

in (219). These equations can now be used to calculate the diffracted field on the 

shadow side of the caustic. 
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SECTION 6 

Numerical Calculation of the Field 
Radiated by a Short Monopole on 
a Flat Plate with a Curved Edge 

It is important to numerically confirm that the caustic corrected UTD (CC-UTD) 

solution derived in Chapter 5 is accurate. To do so, two geometries are considered 

in this chapter. First, the radiation by a monopole mounted on a flat plate with a 

curved edge defined by a parabolic equation is determined. This CC-UTD solution 

is then compared to the classical UTD solution. The other geometry considered is 

the radiation by a monopole on an elliptic disk. The CC-UTD solution is compared 

to the classical UTD solution and a Moment Method (MM) solution. This chapter is 

devoted to the numerical confirmation of the CC-UTD solution of Chapter 5. 

1    Radiation of a Short Monopole on a Flat Plate 
with an Edge Defined by a Parabolic Equation 

The first geometry to be studied is the radiation by a monopole on a flat plate with an 

edge defined by a parabolic equation. To conform to the assumptions of the derivation 

of the CC-UTD in Chapter 5 it is important that the monopole is mounted along the 

symmetry axis of the parabolic edge. Also, the radiation pattern must be taken in 

the plane of symmetry of the parabolic edge. This geometry is shown in Figure 18. 

This section consists of two parts. First, the parameters required for the CC-UTD 
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Figure 18:  Geometry for the radiation of a short monopole on. a flat plate with a 
curved edge defined by a parabolic equation. 
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and the UTD solutions axe determined. Next, the radiated field is calculated and 

compared. 

1.1    Parabolic Edge Radiated Field Parameters 

In order to determine the geometric parameters required for the use of the CC-UTD 

and the UTD, the edge of the plate will be defined as 

x\ = Aaye (225) 

where a is the focal length of the parabola. First, the diffraction points can be deter- 

mined by enforcing the fact that cos ß = cos ß'. In doing so, the central diffraction 

point is found to be located at 

ye = 0 (226) 

and the non-central diffraction points are found to be located at 

Vo + eJ{KY ~ (Vo)2 cot j>c       ;iis'c>a 
ync =   (227) 

Vo - jecsjiVo)2 - K)2. cot V>c     ; if s'c < a 

where y0 = s'c — 2a, ec = sgn {sin V'c} and the monopole location s'c is fixed. Using this 

result it is easy to determine the caustic lit and caustic shadow regions. If y„c > 0 

the far-zone point is in the caustic lit region and if ync < 0 the far-zone point is in 

the caustic shadow region. Also, the distance from the monopole to the non-central 

diffraction point is 
/ 3/nc — Vo food 

COS^c 

The next quantities needed are the curvature and the second derivative of the curva- 

ture at the diffraction points. The curvature of the edge is defined as [33] 

K'm-^r (229) 

where using (225) it is easy to show that 

1   /    a    \3/2 

-w = sfc) (230) 
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for a point on the parabolic edge.   Next, evaluating (230) at the central and non- 

central diffraction points we obtain 

ng{Qc) = j- (231) 

and 
1   / \3/2 

*N->-£U+i-]   ' (232) 

respectively. Also, differentiating (230) twice with respect to xe and evaluating it at 

the central diffraction point we obtain 

\nWe) = -34(Qc) = ^ • (233) 

It is now necessary to determine the diffraction angles tß and ß at each of the diffrac- 

tion points. The value of ip at the central diffraction point is if>c, the angle used 

to specify the pattern and ßc = ß'c = |. The angle ßnc = ß'^ at the non-central 

diffraction points is found using cos/3„c = S"c • e which results in 

sin/?nc = N 
«.+*«*>'«, (234) 

The angle ip at the non-central diffraction points is found to be 

la cos ibc 
cosine = , • (235) 

sm/?ncy
r(2a)2 + 4aync 

Next, it is important to determine the distance to the second caustic of the central 

and non-central diffraction points. To do so, we recall (10) from Chapter 2 to find 

^'>u-£«•*.) t236) 

as the caustic distance at the central diffraction point, and 

(a + ync)snr/3nc-a 

as the second caustic distance at the non-central diffraction points. Also noting that 

sc • re(Qnc) = ync cos i/>c, (238) 
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we are able to determine the argument of the caustic correction transition functions 

and the far-zone approximation for the non-central diffraction points. Finally, it is 

necessary to determine the Geometrical Optics (GO) field and the incident field at 

each of the diffraction points. It is commonly known that the field radiated by a short 

monopole on an infinite ground plane is [35, 36] 

,-jkR 

E(P) = -6E0 sin 0^-U it !-• 
(239) 

where 

E0 = ^^ = -j60Iokd (240) 

and R is the distance from the monopole to the far-zone observation point. Also, Zc 

is the impedance of free space, I0 is the current on the monopole and d is the length 

of the monopole. Using (239) we find that 

&{Qc) = f'E0^ (241) 
sc 

is the field incident at the central diffraction point and 

Ei(Qnc) = i>'E0—r- (242) 
*„c 

is the field incident at the non-central diffraction points.   Next, using the far-zone 

approximation 

Re — s'c cos ij)c        ; for phase terms 

; for amplitude terms 

in (239), the GO field is given by 

(243) 

e-jkRc 

EGO(P) = $cE0cosi>c e^cos^ —- U[x - &]. (244) 

Now that we have the GO field and the necessary diffracted field parameters, the 

diffracted field can be calculated using the expressions derived in Chapter 5. Us- 

ing (4a) of Chapter 2 we find 

T _ -/3c(aneBinV>c) + ^e(2a) .^ 

sin ßncyJ(2a)2 + 4aync 

79 



y 
Figure 19: Polarization unit vector directions for the radiation by a short monopole 
on a flat plate with a parabolic edge. 

at the non-central diffraction points. These polarization vectors are shown in Fig- 

ure 19. The ßc components of each of the non-central diffraction points will cancel 

leaving only the ipc components since the non-central diffraction points are symmet- 

rically located. Therefore, the diffracted field in the caustic lit region (i.e., ync > 0) 

is 

5nc       I 

-JkRc 

Re 

+   i>c2{E0 
sin/3nc^/(2a)2 + 4oT/nc    * 

xDh{Qnc)Tnc{Z^)Jp*{Qnc)e*v-™*< 
-jkRc 

~RT 
(246) 

where (187) has been used in conjunction with the diffracted field parameters found 

previously in this subsection. Also, the diffraction coefficient is given by (190) 

through (192) of Chapter 5, the argument of the caustic correction transition func- 

tions is 

£ = y/2k[ync cos t\)c - s'nc + s'c] (247) 
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from (189) and i\ is given in (188) of Chapter 5.   Next, the diffracted field in the 

caustic shadow region (i.e., ync < 0) is 

e-jkRc 

Ed(P)   ~   fe j- E0 ^J Dh(Qe)T.(&0) y/rtQc) 
Re 

,-JkRc 
-E0^\vh(Qc)Ts(t,2)y/p^M— (248) 

where (214) has been used in conjunction with the diffracted field parameters found 

previously in this subsection. Also, the diffraction coefficient Dh(Qc) is given by (217) 

and (218) of Chapter 5 and Vh{Qc) is given by (203), (217) through (221), (223) 

and (224) of Chapter 5. The argument of the caustic correction transition functions 

is 

( = v/2%nccosV>c-C + ^]  e"^4 (249) 

from (216) and r\ is given in (215) of Chapter 5. These formulas now form a complete 

CC-UTD solution. The sum of the GO field and the diffracted field corresponding to 

either the caustic lit region or the caustic shadow region give the total radiated field. 

1.2 Numerical Calculation of the Field Radiated by a Short 
Monopole on a Flat Plate with a Curved Edge Defined 
by a Parabolic Equation 

The numerical calculation of the radiated field expressions derived in Subsection 1.1 

confirms the uniformity of the CC-UTD. This also leads to some insight into the 

physical phenomenology involved in this problem and the CC-UTD formulation. The 

CC-UTD formulation is compared to the classical UTD solution to illustrate their dif- 

ferences. This subsection is devoted to the numerical calculation of the field radiated 

by a short monopole on a flat plate with a parabolic edge. 

From (227) it is easily seen that if s'c < a the non-central diffraction points have 

a complex y location. This means that there is no caustic lit region for this case 

and the classical UTD solution is valid. Also, if s'c « o there are an infinite number 

of diffraction points when the observation is taken along the face of the plate since 

the edge is defined by a parabolic equation. This type of ray structure has not been 

considered here.   Therefore, only the case where s'c > a will be considered in this 
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subsection. The quantity to be plotted throughout this subsection is 

E (dB) = 20 log10 | j>c ■ E(P) | (250) 

where E(P) is the radiated field component. The factor E0 
e~'R is common to all 

of the ray optical expressions and will be suppressed in all the calculations in this 

subsection. 

For the sake of discussion, the central ray diffracted field is the first term in (246) 

when P is in the caustic lit region or the first term of (248) when P is in the caustic 

shadow region. These terms are labeled this way because they are the same except 

the caustic correction transition functions differ on the lit and shadow sides of the 

caustic. The non-central ray diffracted field is the second term in (246) in the caustic 

lit region. Finally, the curvature dependant central ray diffracted field is the second 

term in (248). Although this diffracted field has a similar form as the central ray 

diffracted field, it has a different curvature dependant diffraction coefficient and a 

different caustic correction transition function. 

The first case considered here consists of a flat plate with a parabolic edge with 

a focal length of a = 3A and a monopole location of s'c = 5A as shown in Figure 18. 

We begin by looking at the GO field and the central ray, the curvature dependant 

central ray and the non-central ray diffracted fields as shown in Figure 20. Several 

interesting facts about the CC-UTD can be seen from this plot. 

First, as discussed in Chapter 5, the Incident Shadow Boundary (ISB) and the 

Reflection Shadow Boundary (RSB) overlap and occur at if>c = ir. The Caustic 

Boundaries (CB) occur when the amplitude spreading factor of the diffracted field 

expressions becomes singular. Therefore, equating the denominator of (236) to zero, 

(H COSV>CB = < — -If (251) 

are the locations of the CB's. The CB's occur at j)CB = 78.4630°, 281.5370° for the 

dimensions chosen here. These values are shown in Figure 20. It is also easy to see 

how the solutions on the lit and shadow sides of the caustic differ. The central ray 

and curvature dependant central ray diffracted fields are each bounded in the caustic 
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Figure 20: Diffracted field components for a plate with a focal length of a = 3A and 
a monopole location of s'c = 5A. 
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shadow region. In this region, the curvature dependant central ray diffracted field 

can be viewed as a correction to the central ray diffracted field. However, the central 

ray and non-central ray diffracted field contributions are each singular in the caustic 

lit region. The central ray diffracted field contribution has a singularity that opposes 

the singularity in the non-central ray diffracted field. These singularities cancel and 

the proper field is obtained in the caustic lit region when these two contributions are 

added to obtain the total diffracted field. 

Another interesting effect that appears in Figure 20 is that the non-central 

diffracted field is infinite along the face of the plate. To explain this phenom- 

ena; (227), (228) and (234) can be used to obtain 

,    ... (*c - 2a)sin i>c + £cJ{s'c)
2 - (y0)

2 cos V>c 
sncsm'ßnc   =    ,   

(s'c - a) sin ipc + ec^(s'c)
2 - (y0)

2 cos ipe 

x^(s'cy-(yoy\sini>c\ (252) 

which is proportional to the large parameter used in the asymptotic expansion of the 

double spectral integral form of the ITD diffracted field. Next, we find that 

(s'c - 2a) sin & + ec\/(^)2 - (Vo)2 cos rj>c 
lim       Y, = = 1 (253) 

*.-o,2»    (,/ _ a) sin ^ + eey/(a'e)2 _ („o)2 cos ^ 

which makes 

ks'nc sin2 ßnc « 2kyja(s'c-a) |sin ^e| (254) 

as the observation point approaches the face of the plate. This result clearly shows 

that the large parameter used in the asymptotic expansion of the double spectral 

integral form of the ITD diffracted field becomes very small near the face of the 

plate. Therefore, this asymptotic expansion is invalid in these directions. This is not 

a failure of the ITD or the CC-UTD, it is simply an effect that has been neglected. 

Also, smßnc —* 0 near the face of the plate since sin2 ßnc approaches zero faster than 

s'nc approaches infinity. When sin ßnc —* 0 the plate will support waves that travel 

along its edge. These waves axe commonly called edge waves. This geometry can 

support edge waves because in is semi-infinite in extent. Edge waves will not be 

supported by most practical geometries and therefore are not a major problem. 
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Figure 21: Radiated field components for a plate with a focal length of a = 3A and a 
monopole location of 5^. = 5A. 

The diffracted field components can now be added to obtain the total diffracted 

field. The GO, diffracted and total fields are shown in Figure 21. This figure clearly 

shows that the diffracted field is not only bounded near the caustic, but it is also 

smooth and continuous. Therefore, the CC-UTD is uniform across the caustics of the 

diffracted field. It is also clear that the diffracted field retains a discontinuity along 

the incident and reflection shadow boundary. Adding the GO field and the diffracted 

field, we see that the total radiated field is smooth and continuous everywhere. 

Finally, Figure 22 shows a comparison between the CC-UTD solution and the 

UTD solution. This figure shows that the CC-UTD solution corrects for the caustics 

of the UTD solution. It also shows that the CC-UTD solution smoothly reduces to 

the UTD solution away from the caustics. This is one of the requirements of a uniform 

solution. 

As another example, Figure 23 shows a comparison between the CC-UTD solution 

and the UTD solution for a plate with a focal length of a = 3.5A and a monopole 

location of s'c = 10A. This figure shows that the CC-UTD solution corrects for the 
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Figure 22: Total radiated field comparison for a plate with a focal length of a = 3A 
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Figure 23: Total radiated field comparison for a plate with a focal length of o = 3.5A 
and a monopole location of s'c = 10A. 
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Figure 24: Total radiated field comparison for a plate with a focal length of a = 0.05A 
and a monopole location of s'c = 200A. 

caustics of the UTD solution. It also shows that the CC-UTD solution smoothly 

reduces to the UTD solution away from the caustics. 

Finally, Figure 24 shows a comparison between the CC-UTD solution and the 

UTD solution for a plate with a focal length of a = 0.05A and a monopole location 

of s'c = 200A. The dimensions of this geometry have been exaggerated in order to 

illustrate the breakdown of the CC-UTD solution. This breakdown occurs when the 

caustic boundaries are near the GO shadow boundary; therefore, only this region is 

plotted. The CC-UTD and UTD solutions are seen to agree very well away from this 

region and unnecessary to show for this discussion. 

The discontinuity along the GO shadow boundary is a result of the fact that the 

caustic correction transition functions are multiplied by the Fresnel transition func- 

tion. This product does not properly correct the fields when the caustic boundaries 

are near the GO shadow boundary. This is a gradual breakdown in that the fields 

slowly become less accurate as these boundaries approach each other. However, this 
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will not impact many practical problems due to the extremely exaggerated dimensions 

necessary for this breakdown to occur. 

2    Gain Normalization of a Uniform Geometrical 
Theory of Diffraction Solution 

The UTD is a good method for determining the field radiated by a monopole on a 

flat plate. However, the UTD field solution must be normalized to obtain the gain of 

that antenna. This section is devoted to the discussion of two simple procedures that 

can be used to find the gain of a short monopole mounted on a structure using the 

UTD. 

This discussion begins with the definition of gain. It is assumed that the antenna 

is lossless for the purposes of this work. This means the directive gain is the quantity 

of interest. The directive gain of an antenna is defined as [35, 36] 

D. = «y> (255) 
■trad 

where the root-mean-squared (r.m.s.) radiation intensity is 

T 2 2 
U{r,e,<t>) = -E{r,e,<!>) (256) 

and Prad is the total r.m.s. power radiated by the antenna. The directive gain can 

now be rewritten as 

Dg = 
47T 

|2 
SF(r,e,4)       EF(rA4>)\ ,__ 
  (257) 
Zc Prad 30Praci 

where 

EF(r, 6, <f>) = Hm re?kTE{r, 9, <f>) (258) 

is the far-zone electric field. The directive gain can also be converted to decibels using 

Pfl(dB) = 101oglo[I>g] (259) 

since it is a power ratio. 

The UTD solution for a monopole mounted on a flat plate uses the field radiated 

by a monopole on an infinite ground plane as its starting point. The diffracted field 
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is then included to account for the fact that the plate is finite in extent. Therefore, 

the total UTD field is proportional to the field of the monopole on an infinite ground 

plane. It is commonly known that the field radiated by a short monopole on an 

infinite ground plane is given by (239) and (240) of Subsection 1.1. It is necessary 

to determine the current on the monopole, 70, and the total r.m.s. power radiated in 

order to obtain the gain of this type of antenna using the UTD. 

The first method for determining the directive gain of a short monopole mounted 

on a structure comes from basic antenna theory. It is easily shown that the total 

r.m.s. power radiated by a short monopole is [35, 36] 

PTad = 2WW = 80|/o| W (260) 

where I0 is the current on the monopole and d is the length of the monopole. The 

directive gain in (257) can now be rewritten as 

*-! 

EF(r,6,<f>) 
(261) 

where EF(r,9,<f>) is the far-zone electric field given in (258) and E0 is given in (240). 

It is important to note that this expression is valid only if the length of the monopole 

is very short. 

The closed form expression for the total r.m.s. power radiated by the monopole 

becomes less accurate as the length of the monopole increases. This occurs because 

the function used to model the current on the monopole becomes less accurate. In 

these cases, numerical techniques are typically used to obtain a more accurate model 

of the current. The Method of Moments is a numerical technique that is used to solve 

for the current induced on the surface of an antenna. This is accomplished by making 

the geometry consist of a wire segment attached to the structure. It is then assumed 

that the radiation in due to a voltage excitation located at the point where the wire 

attaches to the plate. This excitation voltage, V0, is a known input into the MM 

solution. The currents induced on the antenna are then obtained using the Method 

of Moments. The current on the monopole, I0, has now been solved for and the total 

r.m.s. power radiated is 

Prad = Re{Voro}. (262) 
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Figure 25: Ray geometry for the radiation of a short monopole on an elliptic disk. 

Therefore, if the current on the wire is obtained using the Method of Moments, it 

can be used in conjunction with the UTD solution to obtain the far-zone electric 

field in (258). The gain can then be obtained using (257) and the total r.m.s. power 

generated by the MM solution. 

3    Radiation of a Short Monopole on an Elliptic 
Disk 

The other geometry to be studied in this chapter is the radiation by a monopole on 

an elliptic disk. To conform to the assumptions of the derivation of the CC-UTD 

in Chapter 5 it is important that the monopole is mounted in the center of the disk 

and the radiation pattern must be taken in the plane of symmetry of the ellipse. 

This geometry is shown in Figure 25. This section consists of two parts. First, the 

parameters required for the CC-UTD and the UTD solutions are determined. Next, 
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the radiated field is calculated using the CC-UTD and the UTD. These results are 

compared to a MM solution. 

3.1    Elliptic Disk Radiated Field Parameters 

It is important to accurately define the edge of the elliptic disk in order to determine 

the diffraction parameters required to use the CC-UTD and the UTD. An ellipse is 

defined by 

(^)!
+(|)J = l (263) 

where a and b are the principle axes of the ellipse in the x and y directions, respectively. 

The x and y coordinates of a point of the edge of the elliptic disk can now be related 

by 

xe   —   a cos i; (264a) 

ye   =   bsinr (264b) 

where v is the only variable. The diffraction points on the edge of the disk can be 

determined by recalling that cos/3 = cos/3' at these points. In doing so, we find that 

Oco = ¥, vcl = f and 

M/-^        ;ifC0>-C2 

In 
-JM/7T      ;nc;o<-C;2 

V ^2 

(265) 

are the diffraction points as shown in Figure 25. Also, ev = sgn{(62 — a?)cosil)0} 

and 

Co   =   (ab cos i>0)
2 (266a) 

C2   =   62(&2-a2)cos2V0-(&2-a2)2 (266b) 

are used to determine the locations of the non-central diffraction points. Now that 

the diffraction points have been found, it is easy to see that if |sinv„c| < 1 the far- 

zone point is in the caustic lit region and all other cases correspond to the caustic 
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shadow region. Next, the distances from the monopole to the diffraction points are 

easily shown to be 

snc= < 

y/a2 + (b2-a2)sm2vn 

y/a2 + (b2- a2) sin2 «, -3 

; if (a2 - b2) sin2 r„c < a2 

; if (a2 - b2) sin2 t>nc > a2 

(267) 

and 5^) = s'cl = b. The curvature of the edge at any point is found to be 

a4b 
*9{Q')   = [a* + (b2 - a2) x2f'2 

ab 

[(asinv)2 -f (bcost;)2] ' 

from (229). Evaluating (268) at Qco? Qci and Qnc we obtain 

(268) 

Kg(Qco) = Kg{Qcl) = ~ö a' 

and 

KgiQnc) = 
ab 

(269) 

(270) 
[62 + (a2_62)sin21;nc]3/2' 

respectively. Also, differentiating (268) twice and evaluating the second derivative at 

Qco and QcX we get 

<(<?<*) = <(<?*) = 3M^6"
fc2) (271) 

which is used in the calculation of the curvature dependant diffraction coefficients in 

the caustic shadow regions. Using the fact that ß = ß' at the diffraction points, 

T 

&o=/3ci = 2 

and 

sin/?„c = 
(6 sin ip0)

2 + (a2 — b2 sin2 ^o) sin2 vn 

(272) 

(273) 
b2 + (a2 - b2) sw2 vnc 

are the oblique incidence angles at the diffraction points. The incidence angles at the 

diffraction points are ip'^ = ip'cl = tß'nc = 0 since the monopole is located on the disk 

and 

V>eO = ^o, (274) 
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V'cl  =  ' 

and 

COS^n 

7T - rp0 ; if V»o < T 

37T - -0O       ; if V*o > T 

— a sin r„c cos V>o 

(275) 

(276) 
smßncyflr2 + (a2 - b2) sin2i>nc 

are the angles from the diffraction points to the far-zone observation point.   The 

caustic distances can now be determined using (10) of Chapter 2 and are given by 

a2b 
p{Qco)- 02_62(1 + cosV,o)' 

a2b 
p(Qcl)- a2_62(l_cosV,o) 

and 

where 

B4(vnc)s'ncsm2 ßn 

P Wnc) ~ 54(T,nc) sin2 ß^ _ 02fc2 + „2^ cos fo sm Vnc 

B(vnc) = <Jb2 + (a2-b2) sin2 v„ 

The GO field is found using (239) to be 

.-W 
EG0(P) = Vo E0 cos 7p0 —— U[TT - Vo] 

where 

R 

E0 = %^ = -jmi0kd. 

(277) 

(278) 

(279) 

(280) 

(281) 

(282) 

Also, (239) can be used to determine the incident field at each of the diffraction points 

-jkb 
as 

Ei(Qa) = Ei(Qcl) = 1>'E0 

at the two central diffraction points and 

&{Q*c) = $'E0 

B-J*»ne 

(283) 

(284) 

at the two non-central diffraction points. The far-zone approximation of the distance 

from a diffraction point to the far-zone observation point, Rd, is 

R — b sin Vd cos ip0       ; for phase terms 

R ; for amplitude terms 
Rd& < (285) 
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Figure 26: Polarization unit vector directions for the radiation by a short monopole 
on an elliptic disk. 

where R is the distance from the center of the elliptic disk to the far-zone point and 

vj is the value of v corresponding to the diffraction point that is to be referenced to 

the center of the disk. It is now necessary to determine the various components of 

the ray fixed coordinate ip in terms of the global coordinate system. In doing so, we 

find that ^co = ty0 and "$c\ = — $0 at the central diffraction points along with 

- ß0 (b sin V>0 cos vnc) — $0 (a sin vnc) + = (286) 
smßncsjb2 + (a2 - b2) sin2 vnc 

at the non-central diffraction points which have been found using (4a) of Chapter 2. 

These polarization vectors are shown in Figure 26. Now, since the non-central diffrac- 

tion points are symmetrically located about the x-axis, the ß0 component of each of 

the non-central diffraction points cancel to leave only the I/J0 components as expected. 

Therefore, the diffracted field in the caustic lit region is 

-jkb 1 

e->'*6l 

o-JkR 

-jkR 

IEO 
e-£- } Dh(Qcl) Tc(6,0)v//(Qci) e*»~*    R 

a sin vnc ,-Jk*'nt 

sin ßncy/b2 + (a2 - b2) sin2 t;nc     
sm 
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xDh(Qnc) Tnc(U,V, 0)\/pd(Qnc) c^-6»--*- ~R~ 
(287) 

where (187) of Chapter 5 has been used with the diffracted field parameters found 

in this subsection. Also, the diffraction coefficient is given in (190) through (192) 

of Chapter 5. The arguments of the caustic correction transition functions must be 

carefully determined since the non-central diffraction points coalesce at both <2co and 

Qcl. Using (189) of Chapter 5 we find that 

6 = yßk[(sin vnc + 1)6 cos ip0 - <c + b] -j3r,T/4 (288) 

is the argument of the caustic correction transition functions for determining the 

diffracted field near the caustics of Qco and 

6 y/2k[(sin vnc -1)6 cos i>0 - s'nc + b] 0-j3r,7c/4 (289) 

is the argument of the caustic correction transition functions for determining the 

diffracted field near the caustics of Qc\. Next, the argument of the caustic correction 

transition functions for the non-central diffracted field is 

inc= ' (290) 
(o       ; if-1 < sinvnc < 0 

£i       ; if 0 < sin vnc < 1 

which has been chosen to account for the fact that the non-central diffraction points 

coalesce to both Qco and Qcl. Also, from (188) in Chapter 5 

7/ = - sgn {/(Qco)} = - sgn {/(Qci)} (291) 

where pd(Qco) and pd(Qci) are given by (277) and (278), respectively.  Finally, the 

diffracted field in the caustic shadow region is 
-jkR 

E\P)   ~   & LEO £p J IMQCO)T.(*o,0)V^Wco) e-J'*6c°s*° ^ 

+   &i-E0^f]ThLQa)T.fa,2)y/rtQa)e-**-* ""** R 
{p-jkb} .  e-jkR 

E0 ^-| Dh(Qcl) 1,(6,0)^)^"* 
R 

{p-jkb -\ .  e-jkR 
E0 ^-j Vh(Qcl) T.(6,2)VWÖe^0"*- -^- (292) 
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from (214) of Chapter 5 and the diffracted field parameters found previously in this 

subsection. Also, the diffraction coefficient Dh(Qc) is given by (217) and (218) of 

Chapter 5 and Vh(Qc) is given by (203), (217) through (221), (223) and (224) of 

Chapter 5. The argument of the caustic correction transition functions for determin- 

ing the diffracted field near the caustics of Q^ is 

6 = y/2k[(sm vnc + l)b cos Vo - s'nc + b]  e~jr>°^4 (293) 

and the argument of the caustic correction transition functions for determining the 

diffracted field near the caustics of Qc\ is 

6 = ^[(sin vnc - 1) 6 cos i>0 - s'nc + b]  e-™*'4 (294) 

where 7/0 = — sgn|/jd(Qco)} and 171 = — sgn|/jc'(Qcl)|. It is important to note that 

it is possible for {(sinv„c ± 1) 6 cos ip0 — s'^ + b} to be complex in the caustic shadow 

region. Although this case should be analyzed using uniform steepest descent tech- 

niques, it is treated here heuristically. The caustic correction transition functions 

are not critical when this occurs because it is usually in the deep caustic shadow 

region. Therefore, | (sin vnc ± 1) b cos ij}0 — s'nc + b \ can be used because it will pro- 

duce a transition function argument that is piece-wise continuous in magnitude. The 

ramifications of this approximation will be discussed in the next subsection when 

these expressions are calculated numerically. These formulas now form a complete 

CC-UTD solution for the radiation by a monopole on an elliptic disk. The sum of the 

GO field and the diffracted field corresponding to the caustic lit region or the caustic 

shadow region give the total radiated field. 

3.2    Numerical Calculation of the Field Radiated by a Short 
Monopole on an Elliptic Disk 

The numerical calculation of the expressions derived in Subsection 3.1 confirms the 

uniformity of the CC-UTD developed in Chapter 5. This subsection contains a com- 

parison between the CC-UTD, the UTD and a MM solution. The field radiated by 

a short monopole on an elliptic disk is calculated in this subsection to illustrate the 

practical use and accuracy of the CC-UTD developed in Chapter 5. 
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The directive gain of this antenna will be plotted throughout this subsection. The 

CC-UTD and the UTD field solutions are converted to directive gain using (261) 

derived in Section 2. Also, the MM solution is generated throughout the subsection 

using the general program developed by Nehrbass, Gupta and Newman [37]. This 

MM solution calculates the gain of the antenna using the second method discussed in 

Section 2. It should be noted that the gain calculations using the CC-UTD and the 

UTD are entirely independent of the gain calculations using the MM. This results in 

an unbiased comparison of the resulting solutions. 

First, as discussed in Chapter 5, the Incident Shadow Boundaries (ISB) and the 

Reflection Shadow Boundaries (RSB) overlap and occur at TJ)0 = 0, 7r. The Caustic 

Boundaries (CB) occur when the amplitude spreading factors of the diffracted field 

expressions become singular. Therefore, equating the denominators of (277) and (278) 

to zero we obtain 

cos^Bo = |(^)2-l] (295) 

and 

cosV>cB1 = jl-(£)2} (296) 

as the locations of the CB's of Q& and Qcl, respectively. It is clearly seen from these 

expressions that if o > y/2b none of the diffraction points will merge. This means 

that there are no caustics for the geometries satisfying this condition. 

The first pattern cut is taken by making o = 2 m and 6 = 5 m at a frequency 

of 200 MHz. The directive gain in the y-z plane for this antenna is calculated using 

the CC-UTD, the UTD and the Method of Moments and the results are shown in 

Figure 27. It is clearly seen that caustics will occur in this plane because o < v2 b. 

The CB's of Q& occur at VCBO = 147.14°, 212.86° and the CB's of Qci occur at 

V»CBI = 32.86°, 327.14° for the dimensions chosen here. These boundaries are clearly 

seen in Figure 27. One of the advantages of the CC-UTD is that it is a fast way 

to compute the radiation pattern. For this geometry, the MM solution required 29 

minutes and 19.24 seconds to compute on a Silicon Graphics Indigo/R4K workstation. 

However, the CC-UTD and the UTD solutions were run concurrently on the same 

computer and required only 1.23 seconds. It is seen from this figure that the CC-UTD 
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Figure 27: Directive gain comparison in the y-z plane for a short monopole mounted 
on an elliptic disk with a — 2 m and b = 5 m at a frequency of 200 MHz. 

is bounded and uniform across the caustics. It also smoothly reduces to the classical 

UTD away from the caustics. It can also be seen that the CC-UTD and the MM 

solutions differ only by about 2 dB in the back lobe region. It can also be seen that 

there are small discontinuities along the GO shadow boundaries. This occurs because 

double diffractions have been neglected in this calculation. 

As discussed at the end of Subsection 3.1, {(sint;nc ± 1)6 cos -0o — ^c + 6} in the 

arguments of the caustic correction transition functions may become complex in the 

caustic shadow region. The angles for which this occurs are 

cos^ = ±\/l-(£) (297) 

by making C2 = 0. These points are fa = 23.58°, 156.42°, 203.58° and 336.42° 

for this geometry and can be seen in Figure 27. It is seen from Figure 27 that this 

has a negligible effect in the main lobe region and only a small effect in the back 

lobe region. The field in these regions are piece-wise continuous as discussed in the 
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previous subsection.   In general, this has little noticeable effect for most practical 

geometries. 

The numerical integration of the classical Method of Equivalent Currents (MEC) 

solution and the more recent ITD formulation is now performed to illustrate the 

differences between them. It is important to note that only the integration of the 

diffracted field contribution of the ITD is performed numerically and the remaining 

integral contributions are taken to be the GO fields. Although this is not a complete 

ITD solution, it is consistent with the formulations in this work and with the as- 

sumptions of the MEC. This will result in an unbiased comparison of the two integral 

formulations. 

The MEC used here is the same as the one used by Greer and Burnside [11]. The 

equivalent currents used by Greer and Burnside are the equivalent currents of Ryan 

and Peters [4, 5] with two modifications. First, as discussed by Knott and Senior [9], 

the substitution of sin2 ß = sin ß sin ß' is made to enforce reciprocity. Second, the 

GTD diffraction coefficients are replaced with the UTD diffraction coefficients for 

normal incidence. These equivalent currents are then substituted into the radiation 

integral and numerically integrated. The comparison between the CC-UTD, MEC 

and MM solutions is shown in Figure 28. It is seen from this figure that the MEC 

solution does a good job of correcting for the caustics. However, there is a difference 

of about 2 dB between the MEC and MM solutions in the back lobe caustic regions. 

This occurs partly because the equivalent currents used will not produce the complete 

UTD solution when the method of stationary phase is applied to the integral. Since 

the UTD diffraction coefficients for normal incidence are used, the stationary phase 

evaluation of the radiation integral can not produce a UTD solution with the proper 

distance parameters for obliquely diffracted rays. 

Next, the diffracted field contribution of the ITD is numerically integrated and 

added to the GO field. The comparison between the CC-UTD, ITD and MM solutions 

is shown in Figure 29. It is seen from this figure that either high frequency solution 

does a good job of correcting for the caustics.  This figure also illustrates that the 
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Figure 28: Directive gain comparison between the CC-UTD, MEC and MM for the 
y-z plane pattern of a short monopole on an elliptic disk with a = 2 m and 6 = 5 m 
at a frequency of 200 MHz. 

CC-UTD solution is a good approximation of the original ITD diffracted field integral 

equation. 

To obtain the other principle plane radiation pattern for this disk, the values of a 

and b are interchanged due to the definition of the angle iß0. Therefore, the other plane 

of this disk is obtained by making a = 5 m and b = 2 m at a frequency of 200 MHz. 

The directive gain in the y-z plane for this antenna is calculated using the CC-UTD, 

the UTD and the Method of Moments and the results are shown in Figure 30. It is 

clearly seen that no caustics will occur in this plane because o > y/2b. Therefore, the 

caustic corrections should have little effect and the CC-UTD and the UTD solutions 

should be essentially identical. The computer run times for this example are the 

same as those of the previous example. It is seen from this figure that the CC-UTD is 

essentially the same as the UTD and in good agreement with the MM. Again, there 

are small discontinuities along the GO shadow boundaries because double diffractions 

have been neglected in this calculation. 
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Figure 29: Directive gain comparison between the CC-UTD, ITD and MM for the 
y-z plane pattern of a short monopole on an elliptic disk with a = 2 m and b = 5 m 
at a frequency of 200 MHz. 
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Figure 30: Directive gain comparison in the y-z plane for a short monopole mounted 
on an elliptic disk with o = 5 m and b = 2 m at a frequency of 200 MHz. 
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Figure 31: Directive gain comparison in the y-z plane for a short monopole mounted 
on an elliptic disk with a = 1.5 m and b = 1.7 m at a frequency of 300 MHz. 

The next pattern cut is taken by making a = 1.5 m and 6 = 1.7 m at a frequency 

of 300 MHz. The directive gain in the y-z plane for this antenna is calculated using 

the CC-UTD, the UTD and the Method of Moments and the results are shown in 

Figure 31. It is clearly seen that caustics will occur in this plane because a < y/2b. 

The CB's of Q& occur at VCBO = 102.79°, 257.21° and the CB's of Qcl occur at 

■0cBi = 77.21°, 282.79° for the dimensions chosen here. These boundaries are clearly 

seen in Figure 31. For this geometry, the MM solution required 30 minutes and 28.58 

seconds to compute and the CC-UTD and UTD solutions required only 1.19 seconds. 

It is seen from this figure that the CC-UTD, the UTD and the MM are in good 

agreement. Again, there are small discontinuities along the GO shadow boundaries 

because double diffractions have been neglected in this calculation. 

The other plane of this disk is obtained by making a = 1.7 m and b = 1.5 m 

at a frequency of 300 MHz. The directive gain in the y-z plane for this antenna 

is calculated using the CC-UTD, the UTD and the Method of Moments and the 

results are shown in Figure 32.   It is clearly seen that caustics will also occur in 
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Figure 32: Directive gain comparison in the y-z plane for a short monopole mounted 
on an elliptic disk with a = 1.7 m and 6 = 1.5 m at a frequency of 300 MHz. 

this plane because a < y/2b. The CB's of Q& occur at ^CBO = 73.47°, 286.53° and 

the CB's of Qcl occur at Vcm = 106.53°, 253.47° for the dimensions chosen here. 

These boundaries are clearly seen in Figure 32. The computer run times for this 

example are the same as those of the previous example. It is seen from this figure 

that the CC-UTD, the UTD and the MM are in good agreement. Again, there are 

small discontinuities along the GO shadow boundaries because double diffractions 

have been neglected in this calculation. 

The next pattern cut is taken by making o = 2.0 m and 6 = 1.414 m at a frequency 

of 300 MHz. The directive gain in the y-z plane for this antenna is calculated using 

the CC-UTD, the UTD and the Method of Moments and the results are shown in 

Figure 33. It is clearly seen that caustics will not occur in this plane because a > V2 6. 

However, for this geometry a « y/2b which means that the diffraction point become 

very close together but do not coalesce. This means that although the UTD solution is 

not singular in this plane, it will predict incorrect directive gain when this occurs. This 

effect can be clearly seen in Figure 33. For this geometry, the MM solution required 44 
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Figure 33: Directive gain comparison in the y-z plane for a short monopole mounted 
on an elliptic disk with a — 2 m and b = 1.414 m at a frequency of 300 MHz. 

minutes and 22.67 seconds to compute and the CC-UTD and UTD solutions required 

only 1.23 seconds. It is seen from this figure that the CC-UTD and the MM are in 

good agreement. It should be noted that the discontinuities along the GO shadow 

boundaries are not caused by the absence of double diffraction terms, but are caused 

by the breakdown of the CC-UTD. It was assumed in the derivation of the CC- 

UTD that the GO shadow boundaries can not be close to the caustic boundaries. 

This breakdown is not catastrophic for this case which means the caustic lit region 

expressions in the CC-UTD axe well behaved when this occurs. 

The next pattern cut is taken by making a = 2.0 m and b = 1.415 m at a frequency 

of 300 MHz. The directive gain in the y-z plane for this antenna is calculated using 

the CC-UTD, the UTD and the Method of Moments and the results are shown in 

Figure 34. It is clearly seen that caustics will occur in this plane because a < \2b. 

However, for this geometry a « y/2b and the diffraction point coalesce on either side 

of the GO shadow boundaries. The CB's of Q& occur at ipCB0 = 3.8207°, 356.1793° 

and the CB's of Qcl occur at rf;cm = 176.1793°, 183.8207° for the dimensions chosen 

104 



180 
fo (Degrees) 

Figure 34: Directive gain comparison in the y-z plane for a short monopole mounted 
on an elliptic disk with a = 2 m and 6 = 1.415 m at a frequency of 300 MHz. 

here. It is clear from Figure 34 that the breakdown of the CC-UTD is catastrophic 

for this case. This means the caustic shadow region expressions in the CC-UTD are 

not well behaved when this occurs. 

The breakdown of the CC-UTD solution on the lit side of the caustic can be 

attributed to one main fact. The product of the caustic correction transition functions 

and the Fresnel transition function do not correctly account for the phenomena that 

is occurring. That is, this product is incorrect when the diffraction points coalesce 

near the GO shadow boundaries. This produces a non-catastrophic result because 

each transition function will correct its own particular phenomena, but when these 

phenomena are near, the result is slightly off. On the other hand, the caustic shadow 

region expressions of the CC-UTD breakdown for two reasons. The first is the product 

of the caustic correction transition functions and the Fresnel transition function do not 

correctly account for the phenomena that is occurring. This is similar to the caustic 

lit region. However, it was seen that the caustic shadow region field predicted by the 

CC-UTD was catastrophic. This occurs because the curvature dependent diffraction 
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Figure 35: Directive gain comparison in the y-z plane for a snort monopole mounted 
on an elliptic disk with a = \2 m and b = 2 m at a frequency of 300 MHz. 

coefficient used in the caustic shadow region was obtained by differentiating the ITD 

half-plane diffraction coefficient. This differentiation is valid only if the function is 

well behaved near the point of differentiation. This is not true in this case because 

we are near the GO shadow boundaries. 

The final pattern cut is obtained by making o = \/2 m and b = 2.0 m at a frequency 

of 300 MHz. This will correspond to the other plane of both of the previous examples 

since the field variation as a function of a is minimal in this plane. The directive gain 

in the y-z plane for this antenna is calculated using the CC-UTD, the UTD and the 

Method of Moments and the results axe shown in Figure 35. It is clearly seen that 

caustics will also occur in this plane because a < y/2b. The CB's of Qco occur at 

V'CBO = 120°, 240° and the CB's of Qcl occur at ^CT1 = 60°, 300° for the dimensions 

chosen here. These boundaries axe clearly seen in Figure 35. The computer run times 

for this example axe the same as those of the previous example. It is seen from this 

figure that the CC-UTD, the UTD and the MM axe in good agreement. Again, there 
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are smaJl discontinuities along the GO shadow boundaries because double diffractions 

have been neglected in this calculation. 
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SECTION 7 

Scattering by a Flat Plate with a 
Curved Edge 

The near-zone scattering by an object with a curved edge is of great importance in 

many high frequency electromagnetic problems. Although the Uniform Geometrical 

Theory of Diffraction gives accurate results away from the caustics of the curved 

edge, it fails near and at the caustics. This chapter is devoted to the derivation 

of a caustic corrected UTD solution for the near-zone diffraction by a curved edge. 

This formulation is similar to that in Chapter 5 except the near-zone point is no 

longer restricted to lie on the face of the plate. This results in a more general caustic 

corrected UTD solution. 

1    Problem Formulation 

In Chapter 5, a caustic corrected UTD solution was derived for determining the field 

diffracted by a curved edge. In that derivation, the source location was restricted to 

lie on the face of the plate. In addition to being a useful solution in its own right, 

it illustrates the basic procedures used to obtain a CC-UTD solution for this type 

of problem. To generalize the applicability of the CC-UTD solution, the near-zone 

point will no longer be located on the face of the plate. The basic procedure used in 

Chapter 5 will be used here to obtain a CC-UTD solution for this more general case. 

Two main topics must be addressed when formulating a caustic corrected UTD 

solution for determining the field near the caustics of waves diffracted by curved edges. 
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First, the canonical geometry must be chosen to be the simplest structure containing 

the phenomena of interest. The method of solution must also be determined. This 

section is a discussion of the canonical geometry and the method of solution for the 

scattering by a flat plate with a curved edge. 

The phenomena of interest here is the coalescence of three diffraction points. 

Therefore, the canonical geometry to be used should contain no more than three 

diffraction points. Although a disk is often used as a canonical geometry, it has 

either two or four diffraction points depending on which region the observation point 

is in. However, this geometry would unnecessarily complicate the solution because 

there is one more diffraction point than is needed for studying this phenomena. This 

occurs because the disk is finite in extent. The simplest geometry that contains the 

phenomena of interest is the curved edge of a semi-infinite fiat plate. Once the CC- 

UTD has been developed for this geometry, the solution can be applied to the disk 

due to the high frequency localization property of electromagnetic fields. 

It is also important to consider the mathematics involved with the geometry in 

order to obtain a tractable solution. The scope of the solution is narrowed for the 

purposes of this work. The procedure used to obtain a solution here can be used to 

obtain a more general solution. However, to study the phenomena of interest, it is 

assumed that the edge of the plate is symmetric, the source direction lies in the plane 

of symmetry and the near-zone observation point is also in the plane of symmetry 

of the edge of the plate. This geometry is chosen so that the diffraction points are 

symmetrically located and equally spaced. A procedure similar to the one developed 

here can be used to obtain a solution if the diffraction points are not equally spaced. 

The ITD developed by Tiberio and Maci [15, 16, 17] will be used in this work 

to obtain a caustic corrected UTD solution. The ITD contains three different com- 

ponents as discussed in Section 1 of Chapter 4. The first term is a Physical Optics 

surface integral. This integral can be formulated by using the spectral domain form of 

the scalar free space Green's function, interchanging the spectral and spatial integrals 

and performing the spatial integrals. This results in a double spectral integral form 

of the PO integral. Upon doing so, it can be seen that the PO integral contains three 
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double integral stationary phase points and a branch point of order — §. Although 

it should be theoretically possible to obtain a uniform asymptotic expansion for this 

type of integral, it is not possible using existing theories. Also, since the phase func- 

tion would have to be mapped to a fourth order polynomial that is a function of two 

variables, the canonical integral would have an extremely complicated form. In fact, 

this integral would be no simpler to compute than the original PO integral. This 

defeats the purpose of the asymptotic expansion. Therefore, we wish to make some 

approximations in order to obtain simpler integrals. 

As discussed in Section 1 of Chapter 4, the PO surface integral minus its edge 

contribution is approximately the Geometrical Optics field. This approximation is 

valid as long as the reflection point is not near the edge when the diffraction points 

coalesce. This is the same as saying that the caustic boundaries can not be close to the 

incident or reflection shadow boundaries. This will be assumed here. Therefore, the 

only remaining contribution of the ITD is the diffracted field component. The total 

ITD field will be approximated by the GO field and the diffracted field contribution 

of the ITD integrated along the edge of the plate. The diffracted field contribution 

of the ITD is derived in Chapter 4. 

Only single integrals appear in this solution. The resulting formulation is simple 

enough in form to allow for the uniform asymptotic expansion of the diffracted field 

integral equations. The canonical integrals used in this expansion are standard and 

well tabulated functions. This is an attractive feature of any asymptotic expansion. 

2    Diffraction Integral Formulation 

A set of integral equations must be formulated so that they can be asymptotically 

expanded to obtain a caustic corrected UTD solution. The ITD will be used in this 

work to obtain these diffraction integrals. This section is a derivation of the diffracted 

field integral equations used to obtain a caustic corrected UTD solution. 

Some assumptions must be made to obtain a usable set of diffracted field inte- 

gral equations. First, as discussed in Section 1, the incident and reflection shadow 

boundaries can not be close to the caustic boundaries caused by the curvature of the 

110 



Figure 36: Scattering geometry for the diffraction by a curved edge. 

edge since only the diffracted field contribution of the ITD is to be asymptotically ex- 

panded here. Next, recalling that the ITD diffracted field in Chapter 4 was obtained 

by asymptotically expanding a double spectral integral assuming that kr sin2/? ~^> 1, 

this must also be enforced here. Finally, it will be assumed that the curvature of the 

edge is symmetric and the source direction and the observation location lie in this 

plane of symmetry as discussed in Section 1. This geometry is shown in Figure 36. 

The diffraction integrals used to obtain a caustic corrected UTD solution are 

determined using the ITD. The diffracted field contribution of the ITD is 

E\P) = I' dEd{l) 
Ce 

(298) 

where Ce is the edge contour and 

-jkr 
dE\l) ~ E\Q') ■ {ß'ßDa(Q') + $'$Dh(Q')} —- dl (299) 

111 



is the electric field diffracted by an infinitesimal length of the edge of a wedge. The 

half-plane diffraction coefficients given by 

lUtf-ff^^**^} (300) 
2 {    cos (—) cos (—J    J 

are used since only flat plates are being considered. Also, the angle parameter o($:F) 

is given by 

a(#*) = 2cos2(^) (301) 

where ^ = ip ^f ij>', the distance parameter is L = r sin2 ß and F[x] is the UTD 

Fresnel transition function defined in (6). It will be advantageous to define the total 

diffracted field as the sum of a soft polarization diffracted field and a hard polarization 

diffracted field 

Ed{P) = Ed(P) + EJXP) (302) 

where 
oo 

Ed(P) = f dEd(xe) (303) 
—oo 

is the soft polarization diffracted field contribution and 

oo 

Ed(P) = j dEd(xe) (304) 
—oo 

is the hard polarization diffracted field contribution. The soft polarized incremental 

diffracted electric field is 

dEd(xe) = E\Q') ■ ß'ßD,(Q') ^ (|Q dxe (305) 

and the hard polarized incremental diffracted electric field is 

dEd(xe) = E\Q') • $'$Dh(Q') ^ (£) dxe (306) 

where the variable of integration is changed from arc length to the x direction. Also, 

the incident field at any point on the edge is 

2?*(Q') = £'(0) e-
jk7'<-f< (307) 
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Figure 37: Polarization unit vectors for the diffraction by a curved edge. 

where 

Ei(0)=ß'cE
i

ßc + j;'cEil)c (308) 

and the polarization unit vectors for the incident field are shown in Figure 37. It 

is now necessary to write the incident ray fixed unit vectors ß' and V>' in terms of 

the fixed incident unit vector directions ß'c and $'e and the diffracted ray fixed unit 

vectors ß and ■$ in terms of the fixed observation unit vectors sc, ßc and V>c. These 

unit vectors are shown in Figure 37. The definition of the xe and ye coordinates of a 

point on the edge is necessary in order to determine these unit vector transformations. 

The ye coordinate of a point on the edge is related to the xe coordinate by 

= E ^2^    2p 

S(2P) 
x„ 

1 Z.l^.l^e.V^    a2p    -r2P =   -,a2x (309) 

since the edge was assumed to be symmetric about the y-axis. The vectors re and 

e shown in Figure 36 can now be determined since the edge of the plate has been 

defined. First, the position vector fe is defined as 

fe = xxe+yye = ]£ r* T^{QC) (310) 
9=0 
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where the derivatives of the position vector are taken with respect to xe. The position 

vector can be written as 

< 

+ $ hrew+M«i(QcK(Qc)+^K5
g(Qc)] xt} 

+f-fB9Axl (311) 
9=7 1' 

using (724), (758) and (763) from Appendix D. The first three coefficients in (309) 

are 

<*2 = Kg(Qc) , (312) 

a4 = K?{Qc) + 2K3
g(Qc) (313) 

and 

a6 = K"{QC) + 34«2(<5C)K»(QC) + 45is|(e?e) (314) 

which are found by comparing (309) and (311). It is important to note that K"(QC) 

and itgV(Qc) are the second and fourth derivatives of the curvature with respect to 

arc length, respectively. The edge vector is given by 

e=    .       ydx°   =T^-r (315) 

from the definition of the unit edge vector and 

e=-2-y|jp (316) 

is the edge vector. The rotation of the incident ray fixed unit vectors ß' and if>' into 

the fixed incident vectors ß'c and if>'c can now be performed. The incident ray fixed 

unit vector ^' is 

'■-&-j£h (317) 

using the definition of ■0' given in (4b) of Chapter 2 and the unit edge vector definition 

in (315). Decomposing the edge vector into 

e = s'c(e.s'c) + ß'c (S-ß'e)+f'e (eT.ft) (318) 
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and taking the cross product we obtain 

'I  (ft)-»/»-/     1(A)-"'/ 
as $' in terms of the incident wave unit vector directions. Next, the unit vector ß' 

is denned as 

ß' = s'cx$' (320) 

using (4d) in Chapter 2 which leads to 

as the vector ß' in terms of the incident wave unit vector directions. The decompo- 

sition of the diffracted ray fixed unit vectors ß and V> into the fixed observation unit 

vectors sc, ßc and $c can now be performed. The unit vector $ is defined as 

(322) 
-     8 x e 

^ ~ sin/3 

using (4a) of Chapter 2. We can now write ^ as 

j, ■ 
«c (Sc x e) x e   (323') 

(£)'*"»   (Ä)'-'3 

using (315) and 
^       *c ^c 
8 =   (324) 

r 

which can be obtained from Figure 36. It is now necessary to decompose the vectors 

e = 8c (e-8c) + ßc (S-ßc)+fe (*•&) (325) 

and 

rexe = 8c {8C • (fe x e)} + & {& • (fe x e)} (326) 

into their sc, ßc and V'c components. This allows us to take the cross products in (323) 

to obtain 

(g-fc) 
i> = ? 

) r sin /3 

+ M"(ti^_ (A)'-»/»/        ( } 
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as the unit vector ij) in terms of its sc, ßc and $. components. Finally, the unit vector 

ßlS 

^=?x#=fiifiiiii_fk2ii (328) 
r r 

using the definition (4c) of Chapter 2 and 5 given by (324).   By decomposing the 

.   position vector fe as 

fe = «c(fe • sc)+ßc (fe-ßc) +$c (f. •&) (329) 

we can perform the cross products in (328) to obtain 

g -    f       *c(g-&)(f.-&) [j.-(f.Xf)](f.-&) 

ac(e"0c) (fe"0c) 

J       ** (e • ßc)        sc [$e • (fe x e )]      ae(e-^c)(fe-gc) 

te>2^   te)**«*/»    fe)^2^/? 
pc • (fe X e )] (fe • Sc) [*e • (fe X e )] (fe • $e) 1 

+ 

ft-(f.xg)](f.-ft)l +        (£),>*„      j (330) 

as the unit vector ß in terms of its sc, ßc and -0c components. 

The soft and hard incremental diffracted electric fields can now be determined 

since the ray fixed unit vectors have been decomposed into the global incident and 

scatter unit vector directions. The soft polarization incremental diffracted electric 

field is 

+ A {A • [#(0) • ft]} (£) ^32 ^<>.» *. 
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+ 

where 

ft{fc.[#(0).W]} (|-)^91e^&. (331) 

h{xe) = -s'c-fe-r (332) 

is the phase function of the diffraction integrals. It is important to determine the order 

of the zeros of the amplitude functions to obtain the correct asymptotic expressions for 

the diffracted fields. It is therefore necessary to determine the various dot products 

in the unit vectors ß', $', ß and $. At this point, these dot products are only 

determined to find the order of the zeros of the amplitude functions because we wish 

to retain the vector nature of the solution. We begin by noting that 

s'c   —   —y cos ij)'c — z sin ip'c (333a) 

ß'c   =   -x (333b) 

rj)'c   =   — ysin^-f z cos ij>'c (333c) 

are the incident wave unit vectors and 

sc   =   ycosipc + zsm^c (334a) 

ßc   =   x (334b) 

i>c   =   —y sin if)c + z cos T(;C (334c) 

are the scattered wave unit vectors. Next, using (310) and (316) we find that 

(335) 

where ye is given in (309). Therefore, the necessary dot products are found to be 

(336a) 

(336b) 

(336c) 

(336d) 

(336e) 
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e-ß'c =    1 

e-i>'c =   -— sin^c oc x 
dxe 

e-ßc =   -1 

e-i>c 
dye   .    , 
dxe 

Te'Sc =   ygCosV'c oc x\ 



fe'ßc     =     Xe 

Te-i>c     =     -He Sm Tpc   OC   X 

(336f) 

(336g) 

(336h) sc-(fexe)   =    lye-xe —-j sinißc « x\ 

$0 • (fe x e)   =   I ye - xe -j-
1 J cos ipc oc x\ (336i) 

using (309) to determine how each quantity is proportional to (oc) xe.   Therefore, 

using (308), (321) and (330) we find that 

*"*   \   , 

^•[E'W.ß'ß]   =   xA-El- ( TO-*c(g-&)fc-a)(g-gQ 

+ *e< 
,      *"    s2(;fe)2'2sm/?sm/3' 

+   * 
.  [j,-(f,xe)](f.-&)(g.ft) 
*       ^(^'^sm/Jsin^' 

*e
3(f;)2r2sin/?sin/3' 

e i -■%. .  / ., N2   

-# 

-E\ 

+ *^-J51 
*<(£) r2sin/3sin/3' 

_Ei   <c(g-fc)fc-fc)(g-^Q 

*    ^4(ft)^2sm^sin/3' 
(337) 

where (336) has been used to determine the order of the zeros. Similarly, we find that 

ßc.[&(0).ß'ß]   = 

+   xe< 

+     *e< 

\_Ei   «g (?■&)(?■ ft)' 
ß'(£;)2r*smßsmß> 

(   £i     4{e.ßc)(e.rc)    \ 
^x^^YrHmßsmß' 

■ sc[^c-(fexe)] (e-$'c) 

*  ^(^'^sin^sin^' 

*e(e-ft)(rV3-c)(e-ft) 

xe3(£)  r* sin/3sin/?' 
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+ *4A&ß 
$c.(rexe)](re.8c)(e-ß'c) 

Jßc 

-Eß, 

+ *1<E: 

xi(£)  r*smßsmß> 

■ fc-(f,xg)](f..fc)(g-ff'c) 

(rexe)]-{e-ßc){re.sc)}(e-ß'cy 

xi^fr2 sin ß sin ß' 

' vi  [fe-(f«xe)](f.-g,)(g-^) 
xl(£;)2r2smßsmß> 

, [gc-(r,xg)](f«-fe)(g-^/e)" 
-#, 

*«(£) r*sin/3sin/3' 
(338) 

and 

de-l&W-ß'ß]     =     Xe< -E, 
,.     «g(g-fe)(g-gfl 

+     *e< -£ 

+   xl{E\ 

^XefäYrHmßsmß' 

.     «»(g-&)(g-fc) 

^(^VsiniSsm^ 

'   Jc(g-fc)(f,^)(g-gQ 
,   *   x3(fr)

2r^sini9sin/?' 

,. [S-c-(fexe)](fe-)9e)(e^^ 

4 I F, *c(g-fe)(r.-ge)(g-jQ 
^(jg^sin/Ssin/?' 

P,-(f,xg)](f,-fl,)(g-^)| 

+F- 

+ *:<3fc 

(339) 

which are found using (308), (321) and (330) in conjunction with (336) to determine 

the order of the zeros. These can now be substituted into (303) and (331) and 

integrated. It is important to note that the terms that are proportional to odd 

powers of xe will integrate to zero. Therefore, the soft polarized diffracted field is 

ii{P) = scm(P)+r4(P)} + ßc{JZ(P) + j;(P)} 
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where the soft polarized diffraction integrals are 
oo 

J x2
eÄ

8
2(xe)e

ikh^d2 
— oo 

and 

• *c(e-ßc) 

J0'(P)   =   -J5& 
.«»(?■ ft) (e-ft) 

2TT 

oo 

f B*(xe) e
jkh^di 

—oo 

VW   =   -E^] zlC°2{xe)J
kh^dxe 

—oo 

*,i« &*i£*i *W) 

iw 
*e

2 (f^sm/Ssin/?' 

ft • (re x e)] (fe • ft) (e • # j ]p,(Q') 

+ 

xi (^rHmßsmß' 

»c(e-fc)(re-fe)(S-f'e) DB(Q>) 

(£)r3sin/3sin/?' 

*o'M   =   TJi 
Da{Q') 

{£-) r3sinßsin/?' 

«J (;£)r3sin/3sin/3' 

+ 

+ 

fc. (fe x e)] (ty, • ft) 2?,(^) 

-sc 

^ (^)r3sin/3sin/?' 

(fexe)]-(?-ft)(fe-?c)} 

x W) 
(;£)r3

Sin/3sin/?' 
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(340) 

(341) 

(342) 

(343) 

(344) 

(345) 

(346) 

(347) 

(348) 

(349) 

(350) 



C°2{xe)   = 
(S'$e)(S"f'e) DS{Q') 

x2
e (^-) r3 sin ß sin/3' 

(351) 

+ 

x* (£-)r3sin/3sin/3' 

[sc • (fe xe )](?.•&)(?■&) g.(<y) 

*2 (^^«rin/Ssin^ 
(352) 

are the amplitude functions of these diffraction integrals. This same procedure is 

now used to determine the hard polarized diffracted field. The hard polarization 

incremental diffracted electric field is given by 

-M*'[^)-wi}(3¥''w* 

+   *{*.[#(,).*?]} j^^Sl.«*)*,. (353) 

where /i(a:e) is the phase function of the diffraction integrals as given in (332). There- 

fore, using (308), (319) and (327) we find that 

[sc-(rexe))(e.ß'c) 
?c. [£''(<))• ^]   =   x2J-E{ 

+   <{E\ 

*°x2
e{£;)2Tsmßsmß> 

'      [sc • (f,x ?)](?■&) 

,    «2 (ft) ***ß**P. 
(354) 

where (336) has been used to determine the order of the zeros. Similarly, we find that 

I      «-(ft) ^m^sm/3'J 

+ **  -£; 
OT.  «c(g-A)(g-fc) 

^(ft)2™*/^*/3'. 
(355) 

and 

(ft)  ™n/3sin/^ 
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+   xAE, 

+ KK 

\ sc(e.ßc)(e.rc)    } 
ßc / \2    * 

f    . [*.(f,xO](?.J;) 
^c 

+ *l{Ek- (356) 

*e(ft) r sin /3 sin ,9' 

a;K£)2rsin'Ssin^< 
which axe found using (308), (319) and (327) in conjunction with (336) to determine 

the order of the zeros. These can now be substituted into (304) and (353) and 

integrated. It is important to note that the terms that are proportional to odd 

powers of xe will integrate to zero. Therefore, the hard polarized diffracted field is 

Mi(P) = sc Ih
2{P) + ft J2

h(P) + & {Kh
0(P) + Kh

2(P)} (357) 

where the hard polarized diffraction integrals are 

IJ(P)   =   -El, , (*■*;) 

2TT 

oo 

f x2
eÄ*(xe)e>khlx<Ua 

oo 

J2\P)   =   -E^ I x2
eB

h
2(xe)e*h^da 

WP)  = -&*. 
.  sc(e.ßc)(e.ß>c) 

2TT 

oo 

f C^{xe)e
jkh^d2 

*  MO Kh
2(P) = -4c "4^ / *ZcjM €***.)& 

(358) 

(359) 

(360) 

(361) 

and 

Äh
2(xe)   = 

B$(xe)   = 

[sc-(fexe)} Dh(Q') 

'* (£:)r2smßsmß' 

(*•£)(*•&) Dh(Q>) 

(£)r*smßsmß' 

C^(xe)   = 

MQ') 
(£)r*smßsmß' 

[& • (fe x e)] Dh(Q') 

*l (^)r2sin/3sin/3' 
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(363) 

(364) 

(365) 



are the amplitude functions of these diffraction integrals. The soft and hard polar- 

ized diffracted field integral equations must be asymptotically reduced on the lit and 

shadow sides of the caustic in order to obtain a caustic corrected UTD solution. 

3    The Uniform Asymptotic Expansion of the Diffracted 
Field Integral Equations in the Caustic Lit Re- 
gion 

Although the diffracted field integral equations derived in Section 2 can be numerically 

integrated to predict the field diffracted by a curved edge, it is advantageous to obtain 

closed form expressions. One way to accomplish this is to asymptotically expand the 

integrals at high frequencies. This section is devoted to the asymptotic expansion of 

the diffracted field integral equations for the lit side of the caustic. 

In the caustic lit region, there are assumed to be three symmetrically located 

diffraction points as shown in Figure 38. This occurs because of the assumed symme- 

try of the edge, source direction and observation location. The uniform asymptotic 

expansion derived in Section 2 of Appendix B can be utilized when these diffraction 

points are nearly coincident with these assumptions in mind. 

As explained in Section 1 of Appendix B, if an integral has three real stationary 

phase points then (i = -rj where fi = sgn{AIV(zc)} and 77 = sgn{hll(xc)}. It is 

also easily shown using (753a) and (764a) of Appendix D that the value of the phase 

function is 

h{xc) = -8e (366) 

at the central stationary phase point and using (756a) and (765a) of Appendix D that 

the value of the phase function is 

&(*nc) = -K ■ ?e(Qnc) " *nc (367) 

at the non-central stationary phase points. The argument of the transition functions 

becomes 

J-J3W4 (368) i = y/2k[-s'c ■ fe(Qnc) - Snc + sc] 
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Figure 38: Caustic lit region diffracted ray geometry for the scattering by a flat plate 
•with a curved edge. 
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using these in (626) in Appendix B and the fact that fi = -t\.  Also, from (753c) 

and (764c) of Appendix D the second derivative of the phase function is 

1 1 
— + hu(xc) = - 

at the central stationary phase point and 

77 = sgn-On(a:c)} = -sgn 

*c      Pd{Qc)\ 
(369) 

(: 

pd(Qc) 

ii (370) 
Jc \pd{Qc) + SC 

is the value of r\. From (756c) and (765c) of Appendix D the second derivative of the 

phase function is 

2 

hn(xnc) = -sin2ßri 
1 1 

+ dxe 
(371) 

Qn Snc        pd(Qnc). 

at the non-central stationary phase points. The only remaining quantities to be 

determined are the values of the amplitude functions of the integrals evaluated at the 

central and non-central stationary phase points. 

The first six derivatives of ye are required in order to evaluate the amplitude 

functions of the diffraction integrals at the central stationary phase point. This 

is accomplished by differentiating the Taylor series form of ye given in (309) and 

evaluating them at xe = xc = 0 to obtain 

Ve\Qc 

dye 

dxe Qc 

d?ye 

dxl 

cPye 
dxl 

d4ye 

Qc 

dxl 

d5ye 

= 0 

= 0 

= a-i = Kg(Qc) 

= 0 

= a4 = <(QC) + Z4(QC) 

dxl 

d*ye 

dxl 

Qc 

Qc 

=   0 

=   o6 = S
IV(QC) + Mn2

g(Qc)K?(Qc) + 4&K*a{Qe) 

(372a) 

(372b) 

(372c) 

(372d) 

(372e) 

(372f) 

(372g) 
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which are also the coefficients of each term in the series using the definition of the 

Taylor series. Next, the common factor 

Da(Q') 
KM = jT (373) 

can be observed in the amplitude functions of the soft polarization diffraction integrals 

of (347) through (352). This can be evaluated at the central stationary phase point 

as 

Tt{xc) = i D,{QC) (374) 

using (767a), (776a) and (779a) of Appendix D. The remaining portions of the am- 

plitude functions are found by substituting (336) into (347) through (352) and taking 

the limit as xe —> 0. This results in 

A'2(xc 

A\{xt 

B'4(xt 

C*2{xc 

Ci(xc 

- {pg(Qc) cos jfe + 8C sin2 A} sin 1>'e jr 

2s*pl(Qc) 
D'm 

=   j,Da{Qc) 
sc 

sc \KI\QC) + Znl{Qc)] - Znl(Qc) _ 

sin ipc sin ij>' 
B3 „2 pliQc) 

I2sl 

Ds(Qc) 

We) 

'c fg 

{PgiQc) - sc cos Tpc} sin ipc sin ij}'c 

ZslPliQc) 
D,{QC) 

(375) 

(376) 

(377) 

(378) 

(379) 

(380) 

where repeated use of l'Hopital's rule and (372) have been used to determine these 

limits. Similarly, the common factor 

(381) 

can be observed in the amplitude functions of the hard polarization diffraction inte- 

grals of (362) through (365). This can be evaluated at the central stationary phase 

point as 

Ä(*c) = -5 MQc) (382) 
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using (767a), (776a) and (779a) of Appendix D. The remaining portions of the am- 

plitude functions are found by substituting (336) into (362) through (365) and taking 

the limit as xe —► 0. This results in 

i5w = iSfeDhm (383) 

*«■> ■ ^M%m (384) 

Co(*c)   =   -2Dh{Qc) (385) 
Sc 

e^ - OT) 5'«M <386> 

where repeated use of l'Hopital's rule and (372) have been used to determine these 

limits. Next, the amplitude functions of the soft and hard polarization diffraction 

integrals can be evaluated at the non-central diffraction points. A result that is 

useful in simplifying these expressions is 

e (Qnc) = f
iQnc\ (387) 

from (315) which is the unit edge vector evaluated at the non-central stationary phase 

points. Therefore, the amplitude functions of the soft polarization diffraction integrals 

of (347) through (352) are 

snc sm   Pnc 

m, ,„   , _ «. [»W-) • *] [W-) • ft] [?«.) • ft] g xnc ■ft4\SBneJ     — 3     -_2 o -^»vV»»^ 

,   {& • fc(Qnc) x g(Qne)]} [re{Qnc) ■ ft] [e (C) ■ fc] 
+ s3cSin2/3nc ^(<?»c) (389) 

B°0{xnc)   =   -,——^ D,(Qnc) (390) 

4  s.,     x {imc)xe((24[fe(Qnc).Jc] 

-sc ({fe ■ [fe(Qne) x g(Qnc)]} - [g(Qne) • ßc] [fe(Qnc) ■ sc]) _, ^ 
+ *3

ncsm2ßnc 
a{Qnc) 
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- {sc • [re(Qnc) x e(Qnc)}} [fe(Qnc) • fc] ff ^ 
+ 4c sin2 ^„c ^(Qnc) 

.,ö.,   ) _  [g(Q-)-t][W-ft]g 

(391) 

(392) 

^nc CK^nc) 
*c [g(Qnc) • fe] IWnc) • gc] [g(gnc) • ft]   ~ 

4c sin2 A 
(<?nc) 

fe • [r;(Qnc) x e (Qne)]} [fe(Qnc) • &] [e (Qnc) ■&]-,„ 
+ 4csin2/3„c Dt{Qnc) (393) 

at the non-central stationary phase points and the amplitude functions of the hard 

polarization diffraction integrals of (362) through (365) are 

snc Sln   Pnc 

■8ncSin   Pnc 

££(*«)    =    7 —-^ Dh(Qnc) 

(*LHsin^ 
^ r*r« ^ -  R-[re(Qnc)xe(Qnc)]} 

(394) 

(395) 

(396) 

(397) 
4csin2/?nC 

at the non-central stationary phase points. This completes the derivation of the 

quantities required to obtain uniform asymptotic expressions for the diffracted field 

on the lit side of the caustic. It is now necessary to substitute these quantities into 

the uniform asymptotic expansion derived in Section 2 of Appendix B and simplify 

the result to obtain a standard ray optical form. 

The uniform asymptotic expansions of the soft and hard polarized diffraction inte- 

grals can now be performed since all the necessary quantities have been determined. 

To make the uniform asymptotic expansions easier to simplify we can recognize that 

gjr/ir/4 

= Sc 

at the central stationary phase point and 

Pd(Qc) 
*c [pd{Qc) + SC 

,-]*/* (398) 

An(««)l       (£|ejsin/?J 
Pd(Qnc) 

Snc [pd(Qnc) + Snc] 
B-JT/4 (399) 
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at the non-central stationary phase points. The diffraction coefficients and caustic 

distances at Q+c and Q~c are equal because of the assumed symmetry of the geometry. 

Therefore, Da,h{Qnc) = Da,h{Qtc) = Dg,h{Q;c) and pd(Qnc) = /(Q+c) = /(<?;c) 

will be used for the remainder of this chapter. We begin here by determining the 

uniform asymptotic expansions of the soft polarization diffraction integrals of (341) 

through (346). It is assumed here that the function Aa
2(xe) is a smooth and slowly 

varying function of xe near the stationary phase points and k >> 1. This allows us to 

use the uniform asymptotic expansion (657) of Appendix B. Therefore, the uniform 

asymptotic expansion of (341) is 

(_-jT77r/4        I 

*< *?•) .r.-*- 

I \ s
nc

SmPnc j 

xTnc(e,7/,2) Pd(Qnc) 

\ Snc [f^iQnc) + Snc] 
„-jks nc 

+ «v^h^i^-QUu {M- 
xT„c(t,Ti,2) ^(g"c) -jk,nc e-3kanc (400) 

\ *nc [pd{Qnc) + S* 

where (375), (388), (398) and (399) have been used to simplify the result. It is now 

assumed that the function Aa
4(xe) is a smooth and slowly varying function of xe near 

the stationary phase points and k ^> 1. This allows us to use the uniform asymptotic 

expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (342) 
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IS 

*c£,(P)   ~   -scE^c—A*4(xc) 
] 

k5/2 W\ 
!e 

ci*M*.)rc(^4) 

-S-c2^; 

~   #Y0 ) • /-#? f-3^2WQc)cos^ + .csm2V>e}sinV>r 
Wc)   S   W   c| 2*^((?e) 

x2>.(ge)Tc(£ ,,}{ /(<?c) 

*c bd(Qc) + ac 

x5/2 

+ -*c[g(Qne)-fc][fe(gnc)-fe]' 

A'Wne) 
*nc  [Pd(<?nc) + *r 

-jksnc 

1 C\ S^Sm/^ 

+ -sc[e{Qnc)4c][rc{Qnc)-^ 

4csinA»c 

xDt(Qnc)Tnc(C,vA) \ 
AQnc) 

a-jksnc (401) 
Snc [pd(Qnc) + 8T 

where (376), (389), (398) and (399) have been used to simplify the result. It is now 

assumed that the function 2?o(£e) is a smooth and slowly varying function of xe near 

the stationary phase points and k ^> 1. This allows us to use the uniform asymptotic 

expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (343) 

is 

ßcJ0\P)   ~   ßcE^Ba
Q{xc)r-\    *     eW'.)Tc((,0) 

2TT Vi&nwi. 

-&2£A ^ B°(Xn^T 
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SU*) a-jksc 

xTnc(£,7/,0) 
pd(Qnc) 

\ Snc [pd{Qnc) + Sr 

-jks„ 

+ ^tec)- -ß'ßc i^u«?. 
4c S*11/3™ 

XTnc^l/.O) 
P«(<?»c) =—jAsn (402) 

where (377), (390), (398) and (399) have been used to simplify the result. It is now 

assumed that the function B\{xe) is a smooth and slowly varying function of xe near 

the stationary phase points and k > 1. This allows us to use the uniform asymptotic 

expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (344) 

is 

0-JT)ir/4 

;}' Jkh^Tnc(t,7),4) 
\y/\h»(xnc)\ 

'W,)-{-M(**^ 

AQc)     "5/2 

xTc(£ ■<>}{ sc[pd(Qc) + sc) }' a-jksc 

4.  ft*, I 3'3 f{A-[ft(0-)x»(q.)]}K(O.J-U 

—<SC [^(Qnc) x e (Qnc)}} - [e(Qnc). ft] [f.(QM) • ?«]) 

- [sc • [fe(Q„c) x e (Qnc)}} [fe(Qnc) • ft] 
+ slc sin /3nc 

Ds{Qnc) 
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xTnc(£,7/,4) 
'\ 

Pd(Qnc) 

Snc  [pd(Qnc) + Sr 

-jkenc 

N v       fe(Qnc) x e (Qne)]} - [g(Qne) . ft] [fe(C?ne) • ?„]) 

s2
ncsmßnc 

& ■ [KjQnc) x e (Qnc)]} [fe(Qnc) • fc] 

slcsmßnc 
+ D.W«) 

xTnc(£,77,4) 1 
AQnc) -jkSnc (403) 

5nc [/(Qnc) + *r 

where (378), (391), (398) and (399) have been used to simplify the result. It is now 

assumed that the function C%(xe) is a smooth and slowly varying function of xe near 

the stationary phase points and k 3> 1. This allows us to use the uniform asymptotic 

expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (345) 

is 

2 •»   >l*„-sJ5i\    e*"" w) ~ -^iMsw^j-T— efkhf-x^Te($t2) 

2TT ^Ek£{*lW(Xnc)}J^ 
e-jTj7r/4 

bc[pd(Qc) + Sc]j 
+ «to.ud=^m>M 

xTnc(£,7y,2) 

+   ^(^c) •-/?>, I 
Pd(Qnc) 

\ Snc \pd{Qnc) + Snc] 
= -J**n 

,,, M ['»-)•*]' 
8lcsmßnc 

D,(Qnc) 
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xTnc(£,7?,2) Pd(Qnc) -jksne (404) 
\ 8nc  \pd(Qrxc) + *nc] 

where (379), (392), (398) and (399) have been used to simplify the result. It is now 

assumed that the function C%(xe) is a smooth and slowly varying function of xe near 

the stationary phase points and k > 1. This allows us to use the uniform asymptotic 

expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (346) 

is 

+^2«'.i{xLC4'(x„)}^ 
g-jtjir/4       I 

y/\h°M\ 
7.i J.  (*sl iPg(Qc) ~ sc cos j)c} sinV>esin-0^\ 

xPAQcWt ,,}{ 
Sc [pd(Qc) + ac 

■ 

,-Jksc 

+   E\Qtc)-{-ß'^ 
& ?  (*c [e {Qnc) • j>c] [re{Qnc) • ac] 

+ 

sLsinßnc 

{Sc • fe(Qnc) X g(<?nc)]} [fe(Qne) • ft] 
s£CSm/3„c 

Da(Qnc) 

xTnc(£,7?,4) Pd(Qnc) 
\ Snc [/(Q„c) + Snc] 

B-jksnc 

+ *Wi).<-f*^[^-),*lfilW-)-* 

+ {?c • [fe(Qnc) X g(Qne)]} [fe(Qne) . ft] 

s^sin^c D.(Qne) 

xTnc(£,77,4) Prf(Qnc) 
a—jksne (405) 

^ «nc [/(Gnc) + *nc] 

where (380), (393), (398) and (399) have been used to simplify the result. Next, it is 

necessary to determine the uniform asymptotic expansions of the hard polarization 

diffraction integrals of (358) through (361).   It is assumed here that the function 
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Ä%(xe) is a smooth and slowly varying function of xe near the stationary phase points 

and k > 1. This allows us to use the uniform asymptotic expansion (657) of Ap- 

pendix B. Therefore, the uniform asymptotic expansion of (358) is 

t* SOT ~ -^«W^l^glf* ^Tc{(,2) 

-sc2E^ 

x 
v^MJ 

^WTncK)'/,2) 

~ ^-{^(ÄH-^} 
X 

( 

/(&) 
x3/2 

*c [/(Qc) + 5C 

^ (-{Sc- [re(Qnc) x eft?^)]}' 
sncsin/3n 

+     ^'Wic)-{-fS-e(-e 
I>*(Qnc) 

XTnc(^7/,2) Pd(QnC) 

\  *nc [pd(Qnc) + Snc] 
a"-jfc*nc 

xTncfol/,2) /(Qnc) -jfcSn (406) 
\ 5nc [/(Qnc) + Snc] 

where (383), (394), (398) and (399) have been used to simplify the result. It is now 

assumed that the function B^(xe) is a smooth and slowly varying function of xe near 

the stationary phase points and k >• 1. This allows us to use the uniform asymptotic 

expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (359) 

is 

e-jrj7r/4 

x <    , ^ <Jkh^Tnc{i,ri,2) 
y/\hu(xnc)\ 
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E>(Qc).{-ß'ß, 

{-. 

{-, 3/3 ( jslsmipcsva.il>; 

kpUQc) 
^Dfc(ge)Te(f,2)J 

nd(n \ ^ 3/2 
pd(Qc) 

' 
3-jk»c 

Sc[pd(Qc) + Sc} 

E*(Q±.) • ^ -rb'ßr.        L i     J    Z>* + E*(QZc)-<-1>'ßc sncsmß„ (Qnc) 

xTnc{t,V,2) 

Pd(Qnc) 

\ 5„c [(^(Qnc) + Snc] 

2>a  (Sc [g^nc^ • ^cl 
5nc sin /3„c 

D-j'A:«„c 

Dh(önc) 

^(O-e) 0-jk»n (407) 
\ 5nc [pd(Q„c) + Snc] 

where (384), (395), (398) and (399) have been used to simplify the result. It is now 

assumed that the function CQ{XC) is a smooth and slowly varying function of xe near 

the stationary phase points and k > 1. This allows us to use the uniform asymptotic 

expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (360) 

is 

I       _-jTjrr/4       J 

=^=lc*fc<*~>TfIC(£,i?,0) 
n(*~)|J # 

*ncsin/3n 

~ i,(Qc)-{-?^^(Qc)rcu,o)} 

xTnc{Z,V,0) \ 

Pd(Qc) o-jksc 

Dh(Qnc) 

Pd(Qnc) 

{ 
\ *nc [/(One) + Snc] 

ancsin/3n 

a-jksnc 

DhiQnc) 
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XTnctf^.O) 
Pd(Qnc) --i*»* (408) 

*\Snc[pd(Qnc) + Snc] 

where (385), (396), (398) and (399) have been used to simplify the result. It is now 

assumed that the function C^ (xe) is a smooth and slowly varying function of xe near 

the stationary phase points and k > 1. This allows us to use the uniform asymptotic 

expansion (657) of Appendix B. Therefore, the uniform asymptotic expansion of (361) 

is 

e;*M*»=)Tnc(£?7?)2) 

?i   [e(Qnc)-ß'c}f oSU,     %1   /2* 
~&2^        27r 1-—J v k 

e-j'jj7r/4 

#°(^Jl 
# '«'■^••(SB)*™"1) 

{ 
,2jkPg(Qc) 

Pd(Qc)     "3/2 

.}' 
-jkse 

xTnc(£ 

+   # 

tfjr  f-{i-Fe(9nc)xe((?TO)]}' 

5„c sin /?„ Dh(Qnc) 

i,V,2) I Pd(Qnc) 

\ *nC [Pd(<?„c) + 5„c] 

xTnc(£,7/,2) 
A 

/»"(9-c) a—jkSnc (409) 
*nc [/>d(<2„c) + 3, 

where (386), (397), (398) and (399) have been used to simplify the result. This 

completes the uniform asymptotic expansion of the diffracted field integral equations 

on the lit side of the caustic. However, it is advantageous to rewrite these results in 

a more convenient and standard form. Therefore, adding (400) through (409) and 

regrouping the terms we obtain 

Ed{P)   ~   E\QC)-D
L{QC) 

Pd(Qc) 

\*c[f*(Qc) + Sc 
a-jk*c 
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i 3/2 

Pd(Qc)     "5/2 

+   E\QC) ^(Qc) | Sc[pd{Qc) + Sc i 
-jksc 

+   E\Qtc) • D (Q+) 
Pd(Qnc) 

^  *nc [pd(Q„c) + Snc] 

+  F(Q«) • D (Q;C) 
Pd{Qnc) 

-jksnc 

,-jfcsne (410) 
\ Snc [pd{Qnc) + *nc] 

which is in a dyadic form similar to the UTD. The first three terms of this expression 

represent the field diffracted by the central diffraction point and the dyadic diffraction 

coefficients are 

=L 
D (Qc) = -ß'ßcD.{Qe)TJit,0)-f'$cDh{Qe)T,{t,0) , (411) 

v\{Qc)   = 

-4 

4'^C(^^)MQC)TC(L2) 
\2jkPg{Qc)j 

jsl sin ij}c sin ip'c Dh{Qc)Tc{i,2) 2/3 /iflsinj^sinj^N 
~ßßc{      kpl(Qc)      ) 

(412) 

and 

V2{QC)   = 

T,? /3<g{pg(Qc) -gcCosV>c}sinV>esin^\ 

2*2^We) / 
xD,(Qc)Tc(t,4) (413) 

where DSth{Qc) are the UTD half-plane diffraction coefficients and Tc(Z,m) are the 

caustic correction transition functions given by (655) of Appendix B. Also, the last 
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two terms of (410) correspond to the two non-central diffraction points. The dyadic 

diffraction coefficient for these terras is 

^(Qnc) = -ß'Mi)Ds{Qnc)-J>'$»{l)Dh{Qnc) (414) 

where D3,n(Qnc) are the UTD half-plane diffraction coefficients. Also, the uniform 

polarization vectors Bu(£) and $„(£) are given by 

[ Snc Sm Pnc 

, - {A • [re(Qnc) x e (Qnc)]} [fe(Qnc) • ft] ^  ^ 

,   -*c {ft • fc(Qnc) X e(Q„c)]} 
+ ^Kc 

T™(^'4) 

t   So [e (Qnc) ' ßc] [TeiQnc) • *e]  „,    „        ,, 
+ <T^ßZ T"c(^'4) 

{A • [fe(Qnc) X e (<?«)]} [fe(<?nc) • ?c] 
+ ^ML  W'*'*) 

~{sc- \re{Qnc) x e (Qnc)]} [fe(Qnc) • &1,,       . 
+ £^£ T~(^'4) 

+   ^c{       sncsinßnc        
T~«'*2> 

§ *c [e (Q„c) • ft] [re(Qnc) • se] 
+ ^i^ r~(^,4) 

i{fI-[?,WJxsW«)]}[i',(««)-&l     (( 
+ ^ri^ 5Wf,,,4)}      (415) 

and 

;.<M)| 

[ 3ncsmpnc J 

ancSin/?nc 
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+   rpcl L—r-5 irnce,7/,0 
(^      5nc sm ßnc 

, -(i-[f.w„)xg(y}ff „ 
+ —- =—5 -r„e(^iy,2)^ ; (416) 

respectively, where Tnc(£,77,m) aie the caustic correction transition functions given 

by (656) of Appendix B. These uniform polarization vectors are used because the 

variation of the caustic correction transition functions prevents us from recombining 

the components of the typical ß and V> polarization vectors. However, in this form 

and 

lim B„(0 = ß (417) 
Kl—00 

Km M() = f (418) 
|£|—oo 

which means that the uniform polarization vectors reduce to the standard polarization 

unit vectors away from the caustics and are modified near the caustics to obtain the 

proper field value. 

4    The Uniform Asymptotic Expansion of the Diffracted 
Field Integral Equations in the Caustic Shadow 
Region 

The field in the caustic shadow region must also be determined in order to obtain a 

uniform asymptotic expression for the diffraction by a curved edge. This asymptotic 

expansion must be performed in a way that is consistent with the expansion on the 

Kt side in order to obtain a uniform result. This section is devoted to the asymptotic 

expansion of the diffracted field integral equations for the shadow side of the caustic. 

It is assumed that only one diffraction point exists in the caustic shadow region as 

shown in Figure 39. This occurs because the two non-central diffraction points have 

coalesced and disappeared. The uniform asymptotic expansion derived in Section 3 

of Appendix B can be utilized with these assumptions in mind. 

As explained in Section 1 of Appendix B, if an integral has one real stationary 

phase point and two complex conjugate stationary phase points then fi = rj where fi = 
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Figure 39: Ray geometry for the diffraction by a curved edge in the caustic shadow 
region. 
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sga{hiy(xc)} and 7/ = sgn{hlI(xc)}. It is also easily shown using (753a) and (764a) 

of Appendix D that the value of the phase function is 

h(xc) = -sc (419) 

at the central stationary phase point and using (756a) and (765a) of Appendix D that 

the value of the phase function is 

h{xnc) = -s'c • fe(Qnc) - ar (420) 

at the non-central stationary phase points. The argument of the transition functions 

becomes 
0-JT}ic/A 

( = (421) yfik[-s'c ■ re(Qnc) - snc + sc] 

using these in (626) in Appendix B and the fact that fi = 77.   Also, from (753c) 

and (764c) of Appendix D the second derivative of the phase function is 

hn(xc) = -   - + 

at the central stationary phase point and 

r] = sgn{hn(xc)} = -sgnj 

Pd(Qc) 
(422) 

pd(Qc) 

i) Sc \pd(Qc) + *c] J (423) 

is the value of 77. The values of the amplitude functions of the diffraction integrals 

where determined in Section 3 and are found in (375) through (380) for the soft 

polarization diffraction integrals and (383) through (386) for the hard polarization 

diffraction integrals. The only remaining quantities to be determined are the values 

of the the second derivatives of the amplitude functions of the integrals with respect 

to xe evaluated at the central stationary phase point. 

It is now necessary to determine the second derivatives of the amplitude functions 

of the diffraction integrals with respect to xe. These derivatives will be divided into 

different elements in order to use the chain rule. First, the values of the vector 

products in (336) evaluated at the central stationary phase point is 

=   «fl(Qc)sin^ (424a) 
Qc 
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e-V'c 

re • sc 

Qc 

sc • (fe x e) 

$e • (fe x e) 
Qc 

=   Kg(Qc) sin^e 

-/^((^COS^c 

-g'^^cosv'c 

(424b) 

(424c) 

(424d) 

(424e) 

(424f) 

fc-(f.xg)-(g.ft)(f. • Jc) 
s. 

Q. 

= - ^ [« "(Qc) + 3«;((?c)] cos & (424g) 

where 1'Hopital's rule and (372) have been used to determine these values. It is also 

necessary to determine the second derivatives of these quantities with respect to xe. 

Differentiating twice with respect to ze we obtain 

SfirlL = hi1*™***™]""* 

^js£l(|xi)j|     = -I^WJ + ^^Jä^ 

dxl 

dxl 

dxl 
J^(|x£)j|       =   ^[<{Qc) + 3Ks{Qc)]cosi;c 

(425a) 

(425b) 

(425c) 

(425d) 

(425e) 

(425f) 

d2   f^c-(fexe)-{e-ßc)(fe-sc) 

dxl xl 

= ~k ^{Qc) + UK
IW<K(QC) + «*JWe)] cos Vc (425g) 
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where the Taylor series form of ye of (309) is used to determine the series form of the 

function to be differentiated. The common factor 

?(x) ft«?) ftW (426) 

where 

V,{Q') = (£-\ r3 sin ß sin ß' (427) 

is now differentiated twice with respect to xe to obtain 

-      X    ^^   "  4^n(«e)^Wc) (428) *3 iP 3« 

where 

K(Qc)   =   Sc^(Qc){5c
2(sin2^-cos2Vc)+2^(Qc) 

-«efc,(Qc)cOS&} (429) 

for the soft polarization integrals. Also, the common factor 

*h{'a)- {jL)T*«nß*Lß>~~ VHW) (30) 

where 

Vh(Q') = (£-) r2smßsmß' (431) 

is now differentiated twice with respect to xe to obtain 

=   ^^^-|n"(QJi>-.Wc) (432) 

where 

K(Qc) = K2
g(Qc) {s2

c (sin2 # - cos2 *e) + p2(Qc)} (433) 

for the hard polarization integrals. The amplitude functions of the soft polarization 

integrals of (347) through (352) are now differentiated twice with respect to xe to 

143 



obtain 

#A}(Qe)   _    -e-*l* <PÄ'2(xe) 
dP 

dP 

y/2^k       dxl 

[«"(&)+ 3ij(Qe)]rin# 
Zs3 Ds(Qc) 

(434a) 

V2irk       dx\ 

-5{pg(Qe)cosV>c + ^sin2V>c} 

12^2(<?c) L*« (Vcj +    aWcJJ 
xsin#D.(&) 

~ {pg(Qc) cos V»c + 5C sin2 V-c} sin ip'c + 
2rf(«e) 

^"Wc) 

d/2 

tPg4'(gc) 
<£Z2 

y/2wk        dx2
e 

-e-*'4 d?B*4(xe) 

=mQc) 

(434b) 

(434c) 
Qc 

Qc VM       dx2
e 

[*?(Qc) + MKI(QC)K?(QC) + 45«j(ge)] 
90*2 COS^cA^öc) 

-««(Qc) [<(&) + 3ij(Qe)] sin2V>c ^ ^ N 

dP 

-3«2(gc)sin2Vc}^n(^c) (434d) 

V27fc       <fe* 

2*g(gc) [*°(Qe) + 8ij(Qc)] 
3«? D,(Qc) 

+ K2(gc)sin^sin^^n(gc) (434e) 

cPCflGc) -e-^/4 #C\{xe) 
dP y/2^k       dxl 

=     K(ft)KcOs|e-feWJ}[<(a) + 3<c3(a)] 

xsinV'cSmV'c-D«(Qc) 

+ ö *J(^) K cos & - ft,(Qc)} 
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x sin<4>csini>'cT?{Qc) (434f) 

at the central stationary phase point where FfiQc) is given in (428) and (429), 

Ds(Qc) is the soft polarization UTD half-plane diffraction coefficient and —-^i is 

given by (812) through (818) of Appendix D. The amplitude functions of the hard 

polarization integrals of (362) through (365) are now differentiated twice with respect 

to xe to obtain 

-e-^4 #Ah
2{xe) d?Ah

2(Qc) 
dP 

dP 

V2~7rJfe       dxl 

-K"(Qc) + 3^(Qe)]sinV>e 

-±Kg(Qc)smrJ,cF?(Qc) 

-e-^4 cP&Zixe) 

Dh(Qc) 

(435a) 

dP 

dP 

xföjrk       dxl 

2K9(QC) [<(QQ) + 3/c^(Qc)] 
Zsl 

+ K2
g{Qc)smj>csiml>'cFi?(Qc) 

Dh(Qc) 

V2*k       dxl 

(435b) 

(435c) 

Qc V^Jrie       dxl 

-[<(Qc) + 3^(ge)]cosV>c 

45? 
Dh(Qc) 

\K9(QC)COS^C^(QC) (435d) 

at the central stationary phase point where T^iQc) is given in (432) and (433), 

Dh{Qc) is the hard polarization UTD half-plane diffraction coefficient and —J$Qc' is 

given by (812) through (818) of Appendix D. This completes the derivation of the 

quantities required to obtain uniform asymptotic expressions for the diffracted field on 

the shadow side of the caustic. It is now necessary to substitute these quantities into 

the uniform asymptotic expansion derived in Section 3 of Appendix B and simplifying 

the result to obtain a standard ray optical form. 
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The uniform asymptotic expansions of the soft and hard polarized diffraction inte- 

grals can now be performed since all the necessary quantities have been determined. 

To make the uniform asymptotic expansions easier to simplify we can recognize that 

eirjx/4 

= 8c 
Pd(Qc) 

D-J*/4 (436) 
y/\hn(xe)\     c N Sc ^«0 + ^ 

at the central stationary phase point. We begin here by determining the uni- 

form asymptotic expansions of the soft polarization diffraction integrals of (341) 

through (346). It is assumed here that the function Aa
2{xe) is a smooth and slowly 

varying function of xe near the stationary phase point and k > 1. This allows us to 

use the uniform asymptotic expansion (673) of Appendix B. Therefore, the uniform 

asymptotic expansion of (341) is 

scx2 <*> ~ I*±K^{^$*™TM 

9Wi  ^3v^J    e**   \em*<)Ta{iA) + *<£ 2* 2Ä5/2lv/i^Ä)i 
fÄ&Ze) 

dxi 
Qc 

+ 4 lC^ ~ ^e)] **") 

J    AQc)    )3/2
e-Jk,c 

} 

+ |(C?c)+ -5j»rin# E &<)'[- +•'{-**  -&      ■   wPg{Qe) 

x [C(lc)-4K2
g(Qc)]Ds(Qc^T3U,4)^ 

,J    SU*)    )" 
\sc[pO(Qc) + sc}j 

0-Jksc 

.«eI>'We) + *e11        " (437) 

where (375), (434) and (436) have been used to simplify the result. Also, the function 

C{lc) is given by 

C(lc) 
3|*Än(Jc)|     h™(lc) 

kl2 

where 

hu(lc) = - 
1 1_ 

Sc + pd(Qc) 

(438) 

(439) 
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is the second derivative of the phase function given by (753c) of Appendix D and 

h1V(k)     =     [*°We)-!$(&)] [COS^C+ «>■#] + 

3 
si 

8C COS lj}c 

PÄQc) 
(440) 

is the fourth derivative of the phase function given by (753e) of Appendix D. It is now 

assumed that the function Ä\{xe) is a smooth and slowly varying function of xe near 

the stationary phase point and k > 1. This allows us to use the uniform asymptotic 

expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (342) 

is 

1    T. OT   ~   -^^(^{^jg-l  e*«->T.«,4) ■}' 
.    1   lSv^F [     e^/4    |7 

+ ^ [w - iiftQe)] ä:(«.) ^^(Xe) 

dx? 

-     / -3s2 W#c)cos V>c + 8c sin2 V'c} sinV>c' 
*«•> • < -** (—i—iw—L— 

xD.[Qc)T.{t ,.,}{ /(Qc) 
5c [/(Qc) + SC 

xS/2 

+ ^)-{-K#T 
J35S* (ps((?c) cos V»c + sc sin2 V'c} sin V>c 

+ 16fcV|(Qc) 

[C(Zc)-4/c2(gc)]D1,(Qc))T^,6)| 

f     AQc)    \7/2 

x 

=-i**e (441) 
l«c[^(Qe) + «e]J 

where (376), (434) and (436) have been used to simplify the result. It is now assumed 

that the function Bo(ze) is a smooth and slowly varying function of xe near the 

stationary phase point and k 3> 1. This allows us to use the uniform asymptotic 

expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (343) 
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IS 

J?=. I2H I     e?"*lA 

\ 
2TT V k   {y/\h*(ze)\) 

^^,(^,0) 

iP55(«.) 
AB2 

+ 1 [C(lc) - 4«*(C?C)] J0'(«e) 

#(Ge)-{-j%I>.(Qe)T.(*,0)} 
^ 

^(Ge) 
*c \pd(Qc) + *c 

-jkac 

W"J   •    PP'\2j*      dP      ^ ijk {-«(5 
x [c(«-4«;(<?j]B.(<?=)jr.tt,2)| 

xfafcF'"~' (442) 

where (377), (434) and (436) have been used to simplify the result. It is now assumed 

that the function Bl(xe) is a smooth and slowly varying function of xe near the 

stationary phase point and k > 1. This allows us to use the uniform asymptotic 

expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (344) 

is 

2* 2kl   lv/l*nWli 
&Bi(xc) 

dzl 
+ ^[c(«-4«J((?j]B;(a!«) 

*{Q.).{-n(**#>i.)->ii&QJ + »#<i4 

pdm 

+ *<w.{-»(ää^ 

N5/2 
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Zbsl {Zsln]{Qc) - si [K?(QC) + 3^(QC)]} 
+ 96jfc3 

x [C(g-4/cJ(gc)]D,(C?c^r^,6)| 

XJ Pd(QJ \     e-i*-c (443) 
U[pd(Qc) + sc]j K     } 

where (378), (434) and (436) have been used to simplify the result. It is now assumed 

that the function C|(a5e) is a smooth and slowly varying function of xe near the 

stationary phase point and k > 1. This allows us to use the uniform asymptotic 

expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (345) 

is 

_ 1 Ei  iL 3v^ /    ^W4    ]'«#«.«)Tu 4) 

x < ^^     + A [C(fc) _ 4^)] q(»c) 
<fcr? 

„<*fn N        ^ 3/2 

UWc)+*c]j 

4.   FVO ^   /   Ätf (3s< _M^1+ 5 sunk an # 

x [C(y-4^(QC)]J5,(QC)^T.U,4)| 

where (379), (434) and (436) have been used to simplify the result. It is now assumed 

that the function Cl{xe) is a smooth and slowly varying function of se near the 

stationary phase point and k ^> 1. This allows us to use the uniform asymptotic 

expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (346) 
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IS 

OT)   ~  ^^(^[-0^^TMA) 

+ ^ [c(/c) - 4«;(<?e)] c;(*e) 
^C|(xe) 

E\QC) 
jir /35^ {pff(Qc) - sc cos V»c} sinij>c sin $ 

x 

{-Wef 

D.(gc)r.(^4)J|- 

2*2^(<?c) 

/(<W     15/2 

;
) 

,-i**<: 
.«c[We) + *e]J 

35a4 {pg{Qc) - ■Sc cos V>e} sin ipc sin ^ 

x [C(lc)-4nl(Qc)]Ds(Qc?jTa(t,6)} 

xj    rjff-)       r/2e-^ (445) 
U[A>d(Qc) + *c]J v      ; 

where (380), (434) and (436) have been used to simplify the result. Next, it is neces- 

sary to determine the uniform asymptotic expansions of the hard polarization diffrac- 

tion integrals of (358) through (361). It is assumed here that the function A^Xe) 

is a smooth and slowly varying function of xe near the stationary phase point and 

k >• 1. This allows us to use the uniform asymptotic expansion (657) of Appendix B. 

Therefore, the uniform asymptotic expansion of (358) is 

■=•  Th 
Sc^(P) sr EL. ±-Äh

2(xc) ^| 1-7^=1 «***> T.&2) k3/2\J\hH^)\) 
»c^e 2TT 

^•(-ft(«)wH 
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U[pd(Qc) + Sc}J 

+     E(Qe).|-^*c^—^— +    Wpg{Qc) 

x [C(lc)-iKl(Qc)]Dh(Qc)^TB(^ 

x / ÜSs) 1     e-i*«e (446) 

where (383), (435) and (436) have been used to simplify the result. It is now assumed 

that the function B%(xe) is a smooth and slowly varying function of xe near the 

stationary phase point and k > 1. This allows us to use the uniform asymptotic 

expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (359) 

is 

Ä#(P)   ~   -^c^^xc)||{-^}3e^)T^2) 

1  <fce
2 + ^[C0c)-4«;(<?e)]J*(*e) 

- *W0.{-»(a^S)^Wc)^,2)} 

U[/(<?c) + SC]J 

+   £(Qc).|-/3/3c^—      dp      +     8k2p2g{Qc) 

x [C{k)-**l{Qc)]Dk{Qc^T.{t,4)} 

\Bc\pd(Qc) + Sc)j K     ' 

where (384), (435) and (436) have been used to simplify the result. It is now assumed 

that the function CQ{XC) is a smooth and slowly varying function of xe near the 

stationary phase point and k ^> 1. This allows us to use the uniform asymptotic 

expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (360) 

151 



IS 

$cK
h

0(P)   ~   icE^^pi{xc) 
fc 

oiW4 

y/\huM\ 
^w(*«)r.(^o) 

^'We)'{-Wel>fc(Qe)r.(^0)} 

+ i[C(/c)-4^c)]ä0
A(a!c)| 

^(<3c) 
\«c[^(Qc) + ac 

0-Jkac 

\sc\pd(Qc) + 8c}) K        J 

where (385), (435) and (436) have been used to simplify the result. It is now assumed 

that the function C$(xe) is a smooth and slowly varying function of xe near the 

stationary phase point and k > 1. This allows us to use the uniform asymptotic 

expansion (673) of Appendix B. Therefore, the uniform asymptotic expansion of (361) 

is 

fcKftP) 

f <PC?(*.) 
«. 

+ 4[c(t)-4«;(a)]cJw 

*«J\{-*M^bH-)I*,2)} 
*{ s -jkse 

Sc{pd(Qc) + *c 

7l7 (Zal d?CZ(Qc)      -5s3
ccosj;c +   #We).{-We(^-^ + 

16*2ft,(Ge) 
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x [C(lc)-AK2
g(Qc)]Dh(Qc?jTs((,4)} 

"{^sfcjr^      (449) 

where (386), (435) and (436) have been used to simplify the result. This completes 

the uniform asymptotic expansion of the diffracted field integral equations on the 

shadow side of the caustic. However, it is advantageous to rewrite these results in 

a more convenient and standard form. Therefore, adding (437) through (449) and 

regrouping the terms we obtain 

#(P) ~ %)^(gJj„fful^ 
Mn \        1 3/2 

o~3kac 

+ ^^^{sJm^r e'ik"      (450) 

which is the caustic shadow region diffracted field in a standard dyadic form.  The 

dyadic diffraction coefficient appearing in the first term of (450) is given by 

D (Qc) = -ß'ßcD.{Qe)T.{l,0)-1>'i>eDh{Qe)T.{t,0) (451) 

and corresponds to the UTD dyadic diffraction coefficient multiplied by the caustic 

correction transition function Ta(£,0) which can be found in (674) of Appendix B. 

The last three terms in (450) correspond to curvature dependant components of the 

diffracted field and their dyadic diffraction coefficients are given by 

^(^^)Dm{(,2) 

9 

-H^t))DhmuM 

-$%(*■ ̂

e**Ww*.2) kpKQc) 
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PPc\2jk      dl 
(9A ■ A. 

<f/2 8.7'Ä: 

^2 

x[C(le)-4Kl{Qe)]D.{Qej^T.(i,2) 

v Ve \2jk       dl2 8jk 

x [C(lc) - 4K2
g(Qc)] Dh(Qc)\ Ts(t, 2),      (452) 

_~,~c ^MQAzJ^^t^ 2,.(g.)r.«f 4) 

V C\2V        dP      +   8VPg(Qc) 

x[C(lc)-4K2
g(Qcj\D,(Qc?jT,(t,4) 

^c\,2*2        <tf2 8Ä25C
3/92((5C) 

X[C(ZC)-4K*(C?C)]IM2C))T^,4) 

V CV2A2       <f/2      ^   48Jb2
/5ff(Qc) 

x[C(/c)-4«2(Qc)]D/l(C?c))ra(e,4) 

_ 3,3 (Z£ fBJHQc)      5^ an & sin # 
PPcV2P       J/2      +      Sk*pl(Qc) 

x[C{lc)-AK]{Qc)]Dh{Qc)}Ts{lA) 

_M /35c
5 «ft#(Qe)      -5^cosV>c 

^^CV2Ä2       <#2      "•" 16VPg(Qc) 

x [C(Q - 4K2
g(Qcj\ Dh(Qc)J T.(*,4) (453) 
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and 

Ji^ N 7,~ (15sI #A\{Qc)      iZ5st {PÄQC) «>s $e + sc sin2 V»c} sin fc 
V3(Qc)     =     -^*c^—5p-+   16fe3p3(Qc) 

x[C(/c)-4K2(Qc)]^(gc)jr8(^6) 

PPc\2V        dP 

35sl {Zsyg(Qc) - s3
c [<(Qe) + 3*;(QC)]} 

+ 96jk3 

x[C{k)-&l{Qc)]D.{Qe)
y}T.{t16) 

_ ?l? (15 j s7
e d?Ca

4(Qc)      Zbsj {pg{Qc) - sc cos V>c} sin V>c sin # 
WC\2V        («2      + 16;Jb3p3(Qc) 

x [C(y - 4KI(QCJ\ D.{Qe)} T.(e,6) (454) 

where DS,/,(QC) are the UTD half-plane diffraction coefficients, C(lc) is given in (438) 

through (440) and the second derivatives of the amplitude functions are given in (434) 

and (435). Also, the caustic correction transition functions Ts((, k) are defined 

in (674) of Appendix B. This completes the uniform asymptotic expansion of the 

diffracted field integral equations for the shadow side of the caustic. 

5    Useful Approximate Field Expressions 

Although the diffracted field expressions derived in Sections 3 and 4 are written 

in terms of simple functions, they may seem complicated at first. Therefore, some 

simple approximations can be helpful in reducing these expressions to something 

more practical. This section is a discussion of two approximations that can be used 

to simplify the calculation of the diffracted field expressions. 

The first approximation deals simply with the shape of the edge. This approxi- 

mation will change only the central diffracted field expressions since only the central 

diffracted field contains explicit information about the shape of the edge. The edge 

of the plate was first assumed to be in the form of a power series as given in (309). 

Although this is theoretically precise, this series can be approximated by only the 
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leading term. This is due to the fact that the central diffracted field is dependant on 

the local geometry near the diffraction point. Therefore, the diffracted field expres- 

sions can be approximated by making 

a4 = K?(Qe) + 3n3
g(Qc) = 0 (455) 

and 

«6 = K™(QC) + S4n2
g(QcX

l(Qc) + 4&K*g(Qe) = 0 (456) 

which is the same as saying K"(QC) « -Znz
g{Qc) and KgV(Qc) « 57ng(Qc). These 

turn out to be excellent approximations as will be shown in the next chapter when 

the expressions derived in this chapter are calculated. 

The second approximation deals with the nature of the diffracted field integral 

equations. Although the diffracted field expressions derived in Sections 3 and 4 are all 

required to obtain a completely uniform caustic corrected UTD solution that reduces 

to the UTD away from the caustic, only two main contributions are required to 

obtain a good approximation of the field. The integrals in Section 2 containing zeros 

will produce only non-central diffracted field components to a first order asymptotic 

approximation. Although the zeros need to be accounted for in order to obtain 

a uniform asymptotic expansion of these integrals, their contribution to the total 

diffracted field is small compared to the integrals that do not contain zeros. Therefore, 

the total diffracted field can be approximated by 

Ed(P) » % JZ{P) + &Kh
0{P) (457) 

where JQ{P) and KQ(P) are the only two integrals that do not contain zeros. It is 

important to note that these are the two integrals that compensate for the disconti- 

nuities of the GO fields. These integrals have been asymptotically reduced on the lit 

side of the caustic in Section 3 and can be written as 

*(P) ~ W-irwjjff+<J^ 

+   #(<?+) • D (Q+) 
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p'iQnc) 
e-jfc.»c (458) 

where 

#(QC) « -ß%Da(Qc)Tc(£,0) -$'ADh(Qc)Tc(£,0) (459) 

is the dyadic diffraction coefficient for the central diffracted field and 

DL{Qnc) = -ß'Bu(t)D*(Q»c)-$'*utt)MQnc) (460) 

is the dyadic diffraction coefficient for the non-central diffracted fields.   Also, the 

uniform polarization vectors Bu(£) and $»(£) are 

g^0»ft|"4[8(^'^r.tt,T.B)} («D [       ^csm/3nc J 

and ^ 

#.(0 « Al"*'''(?")'Alr-«.T.O)} , (462) [       Bnc sin Pnc J 

respectively. It is clear that these expressions do not reduce to the standard UTD 

ray fixed polarization unit vectors ß and $. It should be noted that ß Tnc(£,77,0) and 

$ Tnc(£,7/,0) can not be used in the place of Bu(£) and *u(0l respectively, because 

the result will no longer be uniform. These integrals have also been asymptotically 

reduced on the shadow side of the caustic in Section 4 and can be written as 

dm \       \ 3/2 

+ i-(ge)-^){ac;g;)
+,1} .-*■      m 

where 

D (Qc) « -ß%D.{Qe)T.{t,0)-f'$eDh{Qe)T.{t,ü) (464) 

is the dyadic diffraction coefficient for the central diffracted field and 

x [C(t)-4«;(Qe)]D.(Qe))T.(^2) 
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4 
■**fö*n<<W+8i* 

x [C(lc) - IK]{QC)] Dh{Qc)\ T.tf, 2)        (465) 

is the dyadic diffraction coefficient for the curvature dependant central diffracted field. 

This turns out to be good approximation as will be shown in the next chapter when 

the expressions derived in this chapter are calculated. 
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SECTION 8 

Numerical Calculation of the 
Field Scattered by a Plane Wave 
Incident on a Flat Plate with a 
Curved Edge 

It is important to numerically confirm that the caustic corrected UTD (CC-UTD) 

solution derived in Chapter 7 is accurate. To do so, two geometries are considered 

in this chapter. First, the scattering by a flat plate with a curved edge defined by 

a parabolic equation is determined. This CC-UTD solution is then compared to the 

classical UTD solution. The other geometry considered is the scattering by an elliptic 

disk. The CC-UTD solution is compared to the classical UTD solution and a Moment 

Method (MM) solution. This chapter is devoted to the numerical confirmation of the 

CC-UTD solution of Chapter 7. 

1    Scattering a Flat Plate with an Edge Defined 
by a Parabolic Equation 

The first geometry to be studied is the scattering by a flat plate with an edge defined 

by a parabolic equation. To conform to the assumptions of the derivation of the 

CC-UTD in Chapter 7 it is important that the plane wave propagates in the plane 

of symmetry of the parabolic edge. Also, the near-zone observation point must be in 

the plane of symmetry of the parabolic edge. This geometry is shown in Figure 40. 

This section consists of two parts.  First, the parameters required for the CC-UTD 
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Figure 40: Geometry for the scattering by a flat plate with a curved edge defined by 
a parabolic equation. 
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and the UTD solutions are determined. Next, the scattered field is calculated and 

compared. 

1.1    Parabolic Edge Scattered Field Parameters 

In order to determine the geometric parameters required for the use of the CC-UTD 

and the UTD, the edge of the plate will be defined as 

x2
e=4aye (466) 

where o is the focal length of the parabola. First, the diffraction points can be deter- 

mined by enforcing the fact that cos ß = cos ß'. In doing so, the central diffraction 

point is found to be located at 

Vo = 0 (467) 

and the non-central diffraction points are found to be located at 

y™ = < 

Vo + eJsl-yl cot#       ; if s\ - y2
0 > 0 

V (468) 

Vo - jecy/yl - si cot#     ; if s\ - y2
0 < 0 

where y0 = SCCOSTJ)C — 2a, ec = sgn{sinV'c} and the observation distance sc is fixed. 

Using this result it is easy to determine the caustic lit and caustic shadow regions. 

If ync > 0 the observation point is in the caustic lit region and if ync < 0 the obser- 

vation point is in the caustic shadow region. Also, the distance from the non-central 

diffraction points to the observation point is 

&nc — 
ync ~ Vo 

„   ■ (469) 
cos^ 

The next quantities needed are the curvature and the second and fourth derivatives 

of the curvature at the diffraction points. The curvature of the edge is defined as [33] 

where using (466) it is easy to show that 

^«n-sfer (471) 
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for a point on the parabolic edge. Next, evaluating (471) at the central and non- 

central diffraction points we obtain 

ng(Qc) = i (472) 

and 
1   /     a     \3/2 

-*«->-£ Urs:) • <473> 
respectively. Also, differentiating (471) four times with respect to xe, evaluating them 

at the central diffraction point and using (758) and (763) of Appendix D to convert 

these derivatives we obtain 

K-(QC) = -ZKI(QC) = j=L (474) 

as the second derivative and 

n?(Qe) = 57ns
g(Qc) = JL (475) 

as the fourth derivative of the curvature with respect to arc length. It is now necessary 

to determine the diffraction angles ip and ß at each of the diffraction points. The 

values of ip and i])' at the central diffraction point are t\)c and tj}'c, respectively. Also, 

the oblique incidence angles at the central diffraction point are ßc = ß'c = |. The 

angle tjt is found using 

2a(sccosipc + ync) ,.„. 
cos i/;nc = i  = (476) 

8nc sin ßncyf(2a)2 + Aaync 

and the angle ip' is found using 

it                  2acosV>c ,tn„s 
cosV'L = 1 (477) 

smßncSJ{2a)2 + Aaync 

at the non-central diffraction points. The angle /3nc = ß^c at the non-central diffrac- 

tion points is 

sin/3„c = a-Hf^rinVc (47g) 

\      a + y„c K     ' 

using cos/3nc = cos/?^c = s'c • e. Next, it is important to determine the distance to 

the second caustic of the central and non-central diffraction points.   To do so, we 
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recall (10) from Chapter 2 to find 

as the caustic distance at the central diffraction point, and 

pd{Qnc) = - (^7^) '~ sin2 ßnc (480) 

as the second caustic distance at the non-central diffraction points. Also noting that 

K-?e(Qnc) = -yncCOSll>'c, (481) 

we are able to determine the argument of the caustic correction transition functions. 

Finally, it is necessary to determine the Geometrical Optics (GO) field and the inci- 

dent field at each of the diffraction points. The incident field at the observation point 

is 

E\P) = {ß'cE
{

ßc + &£je} c*""■<*«-*> U [T - |Vc - #1] C4«2) 

which is determined using classical GO techniques. The incident wave polarization 

vectors ß'c and ip'c must be transformed into the global polarization unit vectors sc, 

ßc and -0c as shown in Figure 41. Using the coordinate transformation 

ß'c   =   -ßc (483) 

$'e   =   ?enn(&-#) + &cos(&-#) (484) 

it is found that 

E\P)   =   {sc El sin^c - Ü) - ßc El + fe E\c cos(^c - #)} 

xcifc.eco.(*e-^) u („. _ |^c _ ^|j (485) 

is the incident field at the observation point. Next, the reflected field at the observa- 

tion point is 

Er(P) = {ßr EßRs + i>T4 Rh} c**«»<*-"ü U [TT - |^c + 1>'c\]        (486) 

where the reflection coefficients are A,,/, = =Fl. The reflected wave polarization vectors 

ßr and 7pr must be transformed into the global polarization unit vectors sc, ßc and i}>c 
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Figure 41: Polarization unit vector definition for the Geometrical Optics fields in the 
presence of a flat plate with a curved edge defined by a parabolic equation. 
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as shown in Figure 41. Using the coordinate transformation 

ßT   =   -ßc (487) 

&     =     ^Sin^c + V'c) + fecOs(& + Ve) (488) 

it is found that 

Er(P)   =   {scElsmfa + tä + ßcEl + faE^cosiiPc + ti)} 

xejks°«*(*«+#) u [TT - |V>C + #|] (489) 

is the reflected field at the observation point. The GO field at the observation point 

is the sum of the incident field and the reflected field at the observation point. The 

diffracted field can now be determined using the diffraction parameters found previ- 

ously. 

The incident field at each diffraction point and polarization vectors are required 

to determine the diffracted field on the lit side of the caustic. The incident field is 

&{Qe) = $',&„.+fcEi. (490) 

at the central diffraction point and 

E\Qnc) = {ß'cEl +&<}e**-~* (491) 

at the non-central diffraction points. It is now necessary to rotate the incident ray 

fixed polarization unit vectors ß' and -0' into the global incident polarization unit 

vectors ß'c and ij}'c. The incident wave ray fixed polarization unit vectors at the central 

diffraction point are ß' = ß'c and ■$' = $'c. The incident wave ray fixed polarization 

unit vectors at the non-central diffraction points are 

ß>=ß>{ ,2a       }+%l—x-sbli;'c    )      (492) 
{ sin ßnc\/(2a)2 + UVnc J [ sin ßncy/{2a)2 + AaVne J 

and 

»=?.[. rx"A**'\   \+9.\. . ,,*.,.   \     m -sncsin^ j   | ff j 2a 

. sinßncyJ{2ay+4aync J        ° \ sin ßncy]{2af + Uyn 
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Figure 42:  Polarization unit vector definition for the diffraction by a curved edge 
defined by a parabolic equation. 

in terms of the global incident wave polarization unit vectors ß'c and ^>'c as shown 

in Figure 42. Also, the modified diffracted ray fixed polarization vectors Bu(£) and 

#u(£) as given by (415) and (416) of Chapter 7 are 

B«(0 =   sc< 

+     ßc 

~  j 2a sc xnc Tnc(£, 7/, 2) + (2a cos ?/>c 4- sc sin2 ipc) xnc ync Tnc($ 

s2
nc sin ßncy/(2a)2 + 4ayn 

2aslTnc(t,V,0)-2aylTnc(t,V,4)} 

S*,. sin ßncyj{2af 4- Aaync J 

lM] 

,     7 J slxnc sintpcT^iCv^) 

S*,. sin ßnc<J(2a)2 + 4ay, 

j>c - 2a) gnt 

«2c sin ßncy/(2a)2 + 4ay, 

(gc cos V>c - 2a) gnc ync sin V>e Tne(£, 77,4) ) 
(494) 

and 

*-(0 = ='•{ 
2aync sinV>cTnc(£,77,2)   I     3 J   scxnc sinV>eTne(^ 

'Pi 
snc sin ßncy/(2a)2 + 4ay„ sncsmßncy/{2a)2 + 

,V,2)  } 
■ 4a2/nc J 

+   ä 12a3c Tnc(^' ^J 0) + 2a y„c cos V>£ 

3nc sin ßncy/(2a)2 + 4ay, 

TncU,V,2)] 

foe J 
(495) 
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respectively, in terms of the global polarization unit vectors sc, ßc and V>c as shown 

in Figure 42. The argument of the caustic correction transition functions is 

t = >/2*I|fneC08^-««: + «e]    ^^ (496) 

from (368) and 77 given in (370) of Chapter 7. These vectors and the diffraction 

parameters derived earlier are now used in (410) through (414) of Chapter 7 along 

with the UTD half-plane diffraction coefficients to determine the diffracted field on 

the lit side of the caustic. 

The diffracted field in the caustic shadow region can be computed using (450) 

through (454) of Chapter 7. The diffracted field parameters required in order to use 

this result have been derived previously in this chapter. The only quantity left is the 

argument of the caustic correction transition functions 

( = y/2k[ynccoSrl;'c-8nc + sc]  e~^'A (497) 

from (421) and 77 given in (423) of Chapter 7. It is important to note that it is 

possible for {ync cos t/)'c - snc + sc} to be complex in the caustic shadow region. Al- 

though this case should be analyzed using uniform steepest descent techniques, it is 

treated here heuristically. The caustic correction transition functions are not critical 

when this occurs because it is usually in the deep caustic shadow region. Therefore, 

I ync cos V»c — snc + sc I can be used because it will produce a transition function argu- 

ment that is piece-wise continuous in magnitude. The ramifications of this approxi- 

mation will be discussed in the next subsection when these expressions are calculated 

numerically. There is no reason to transform the polarization vectors since those used 

in Chapter 7 are also used here. Therefore, the GO field and the diffracted field add 

to produce the total field. 

1.2    Numerical Calculation of the Field Scattered by a Flat 
Plate with a Parabolic Edge 

The numerical calculation of the field expressions derived in Subsection 1.1 confirms 

the uniformity of the CC-UTD. This also leads to some insight into the physical 

167 



phenomenology involved in this problem and the CC-UTD formulation. The CC-UTD 

formulation is compared to the classical UTD solution to illustrate their differences. 

This subsection is devoted to the numerical calculation of the total field in the presence 

of a flat plate with a parabolic edge. 

Various components of the total field are plotted in this subsection in order to 

discuss the properties of the CC-UTD solution. The quantity to be plotted throughout 

this subsection for a ß'c polarized incident plane wave is 

Eß (dB) = 20 log10 | ßc • E(P) | (498) 

for the ßc component of the field at the observation point. The CC-UTD does not 

produce any cross polarization for this incident wave polarization. This is due to the 

assumed symmetry of the edge, incidence direction and observation location. Also, 

E(P) is the component of the electric field being discussed. Next, the quantities to 

be plotted throughout this subsection for a ific polarized incident plane wave are 

Ea (dB) = 20 log10 | sc ■ E(P) | (499) 

for the sc component and 

E+ (dB) = 20 log101 & • E(P) | (500) 

for the $c component of the field at the observation point. However, the CC-UTD 

does not produce a ßc component for this incident wave polarization. This is due to 

the assumed symmetry of the edge, incidence direction and observation location. 

The first case considered here consists of a flat plate with a parabolic edge having 

a focal length of a = 3A, an observation distance of ac = 5A and an incidence angle of 

i/)'c = 45° as shown in Figure 40. The different components of the CC-UTD solution 

will first be plotted to illustrate some of the properties of the formulation. Only 

the J'{P) will be separated into its different components since all of the remaining 

integrals will have the same characteristics. 

For the sake of discussion, the central ray diffracted field is the first term in (402) 

of Chapter 7 when P is in the caustic lit region or the first term of (442) of Chapter 7 
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when P is in the caustic shadow region. These terms are labeled this way because 

they are the same except the caustic correction transition functions differ on the lit 

and shadow sides of the caustic. The non-central ray diffracted field is the sum of 

the last two terms in (402) of Chapter 7 in the caustic lit region. Finally, the curva- 

ture dependant central ray diffracted field is the second term in (442) of Chapter 7. 

Although this diffracted field has a similar form as the central ray diffracted field, 

it has a different curvature dependant diffraction coefficient and a different caustic 

correction transition function. 

We now look at the central ray, curvature dependant central ray and non-central 

ray diffracted field components of J0*(P) as shown in Figure 43. As explained earlier, 

this is obtained by making the incident wave purely ß'c polarized. Several interesting 

facts about the CC-UTD can be seen from this plot. 

The Incident Shadow Boundary (ISB) is located at tj)c = TT + tf}'c = 225° and 

the Reflection Shadow Boundary (RSB) is located at ipc = x - ip'c = 135° for a flat 

plate with a parabolic edge with a focal length of a = 3A, an observation distance of 

sc = 5A and an incidence angle of V^ = 45°. The Caustic Boundaries (CB) occur when 

the amplitude spreading factor of the diffracted field expressions becomes singular. 

Therefore, equating pd{Qc) + sc to zero we find that 

cos V>CB = \ cos if)'c \ (501) 

are the locations of the CB's. The CB's are located at VCB = 60.47°, 299.53° for the 

dimensions chosen here. These values are shown in Figure 43. It is also easy to see 

how the solutions on the fit and shadow sides of the caustic differ. The central ray 

and curvature dependant central ray diffracted fields are each bounded in the caustic 

shadow region. In this region, the curvature dependant central ray diffracted field 

can be viewed as a correction to the central ray diffracted field. However, the central 

ray and non-central ray diffracted field contributions are each singular in the caustic 

lit region. The central ray diffracted field contribution has a singularity that opposes 

the singularity of the non-central ray diffracted field. These singularities cancel and 
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— Central  Ray Diffracted Field 

— Curvature Dependant Central 
Ray Diffracted Field 

-  Non-Central Ray Diffracted Field 
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Figure 43: Diffracted field components of J£(P) for a plate with a focal length of 
a — 3A, an observation distance of sc = 5A and an incidence angle of ip'c = 45°. 
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Figure 44:  Field components in the ßc direction for a plate with a focal length of 
a = 3A, an observation distance of sc = 5A and an incidence angle of i>'c — 45°. 

the proper field is obtained in the caustic lit region when these two contributions are 

added to obtain the total diffracted field. 

As discussed at the end of Subsection 1.1, {j/„c cos ^'c - snc + sc} in the arguments 

of the caustic correction transition functions may become complex in the caustic 

shadow region. The angles for which this occurs are 

cos *-£-} (502) 

by making s\-y\ = 0. These points are fa = 78.4630° and 281.5370° for this 

geometry and can be seen in Figure 43. It is seen from Figure 43 that this has a 

negligible effect for the central ray diffracted field but not for the curvature dependant 

central ray diffracted field. However, the sum of these two field components shows 

little effect from this anomaly. The field in the caustic shadow region is piece-wise 

continuous as discussed in the previous subsection. 

We can now look at the incident, reflected and total diffracted fields for the ßc 

component as shown in Figure 44.   These quantities are obtained by making the 
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Figure 45: Total field comparison in the ßc direction for a plate with a focal length 
of a = 3A, an observation distance of sc — 5A and an incidence angle of iß'c = 45°. 

incident wave purely ß'c polarized. This figure clearly shows that the diffracted field 

is not only bounded near the caustic, but it is also smooth and continuous. Therefore, 

the CC-UTD is uniform across the caustics of the diffracted field. It is also clear that 

the diffracted field retains discontinuities along the incident and reflection shadow 

boundaries. Also, as explained earlier, there is a negligible effect of the approximation 

used in the argument of the caustic correction transition functions on the shadow side 

of the caustic. 

Finally, Figure 45 shows a comparison between the CC-UTD and UTD solutions. 

Adding the incident, reflected and diffracted fields; we see that the total field is 

smooth and continuous everywhere. This figure shows that the CC-UTD solution 

corrects for the caustics of the UTD solution. It also shows that the CC-UTD solution 

smoothly reduces to the UTD solution away from the caustics. This is one of the 

requirements of a uniform solution. It is clear that the CC-UTD solution retains 

the proper discontinuities along the incident and reflection shadow boundaries to 

compensate for the discontinuities of the GO fields. 
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Figure 46:  Field components in the sc direction for a plate with a focal length of 
a = 3A, an observation distance of sc = 5A and an incidence angle of ip'c = 45°. 

We can now look at the incident, reflected and total diffracted fields for the sc 

polarization as shown in Figure 46 and the ijjc polarization as shown in Figure 47. 

These field quantities are obtained by making the incident wave purely $'c polarized. 

These figures clearly show that the diffracted field is not only bounded near the caus- 

tic, but it is also smooth and continuous. Therefore, the CC-UTD is uniform across 

the caustics of the diffracted field. It is also clear that the diffracted field in the V*c 

direction retains discontinuities along the incident and reflection shadow boundaries 

as expected. As explained earlier, there is a negligible effect of the approximation 

used in the argument of the caustic correction transition functions on the shadow side 

of the caustic. 

Finally, Figures 48 and 49 show a comparison between the CC-UTD and UTD 

solutions for the ac and $c components, respectively. Adding the incident, reflected 

and diffracted fields; we see that the total field is smooth and continuous everywhere. 

These figures show that the CC-UTD solution corrects for the caustics of the UTD 

solution.   It also shows that the CC-UTD solution smoothly reduces to the UTD 
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Figure 47:  Field components in the ij)c direction for a plate with a focal length of 
o = 3A, an observation distance of sc = 5 A and an incidence angle of tp'c = 45°. 
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Figure 48: Total field comparison in the sc direction for a plate with a focal length 
of a = 3A, an observation distance of sc = 5A and an incidence angle of if>'c = 45°. 
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Figure 49: Total field comparison in the V>c direction for a plate with a focal length 
of a - 3A, an observation distance of sc = 5A and an incidence angle of ij)'c = 45°. 

solution away from the caustics. This is one of the requirements of a uniform solution. 

Although these patterns are continuous everywhere, the sc component is discontinuous 

in slope along the incident and reflection shadow boundaries. This occurs because 

the slope diffraction terms where neglected in the asymptotic expansion of the ITD 

diffracted field of Chapter 4. This is generally a small effect that is usually neglected. 

This line of thinking is consistent with the UTD. 

As another example, the total field is calculated for a plate with a focal length 

of a = 4A, an observation distance of sc = 8A and an incidence angle of tp'c = 30°. 

Figure 50 shows a comparison between the ßc components of the CC-UTD and UTD 

solutions which is obtained by making the incident wave ß'c polarized. We see that the 

total field is smooth and continuous everywhere. This figure shows that the CC-UTD 

solution corrects for the caustics of the UTD solution. It also shows that the CC-UTD 

solution smoothly reduces to the UTD solution away from the caustics. It is clear 

that the CC-UTD solution retains the proper discontinuities along the incident and 

reflection shadow boundaries to compensate for the discontinuities of the GO fields. 
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Figure 50: Total field comparison in the ßc direction for a plate with a focal length 
of a = 4A, an observation distance of sc = 8A and an incidence angle of ij>' = 30°. 

Figures 51 and 52 show a comparison between the CC-UTD and UTD solutions for the 

8C and T\}C components, respectively. These components are obtained by making the 

incident wave $'c polarized. These figures show that the CC-UTD solution corrects for 

the caustics of the UTD solution. It also shows that the CC-UTD solution smoothly 

reduces to the UTD solution away from the caustics. Although these patterns are 

continuous everywhere, the sc component is discontinuous in slope along the incident 

and reflection shadow boundaries. This occurs because the slope diffraction terms 

where neglected in the asymptotic expansion of the ITD diffracted field of Chapter 4. 

This is generally a small effect that is usually neglected. This line of thinking is 

consistent with the UTD. 

2    Scattering by an Elliptic Disk 

The other geometry to be studied in this chapter is the scattering by an elliptic disk. 

To conform to the assumptions of the derivation of the CC-UTD in Chapter 7 it is 

important that the incident plane wave impinges on the disk along one of its two 
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Figure 51: Total field comparison in the sc direction for a plate with a focal length 
of a = 4A, an observation distance of sc = 8A and an incidence angle of ij)'c = 30°. 
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Figure 52: Total field comparison in the if)c direction for a plate with a focal length 
of o = 4A, an observation distance of sc = 8A and an incidence angle of ip'c = 30°. 
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Figure 53: Geometry for the scattering by an elliptic disk. 

axis of symmetry and the bistatic pattern must be taken in the plane of symmetry 

of the ellipse. This geometry is shown in Figure 53. This section consists of two 

parts. First, the parameters required for the CC-UTD and the UTD solutions are 

determined. Next, the scattered field is calculated using the CC-UTD and the UTD. 

These results are compared to a MM solution. 

2.1    Elliptic Disk Scattered Field Parameters 

It is important to accurately define the edge of the elliptic disk in order to determine 

the diffraction parameters required to use the CC-UTD and the UTD. An ellipse is 

defined by 

(f)2+(y)! = 1 <503> 
where a and b are the principle axes of the ellipse in the x and y directions, respectively. 

The x and y coordinates of a point of the edge of the elliptic disk can now be related 
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by 

je.   =   a cos v 

ye   —   b sin v 

(504a) 

(504b) 

where v is the only variable.  The diffraction points on the edge of the disk can be 

determined by recalling that cos/3 = cos/3' at these points. In doing so, we find that 

Vco = 7, vel = f and 

sin vnc = < 

— Ci      ev 

2C2      2C2 

— C\       .   £v 
-3 

y/c2 - 4C0C2 ; if C\ - iC0C2 > 0 

yjd - AC0C2        ; if C\ - 4CoC2 < 0 

(505) 

are the diffraction points as shown in Figure 53.   Also, e„ = ±1 is determined by 

enforcing the fact that cos/3 = cos/3' and the constants Co, C\ and C2 are given by 

C0   =   62[(a2 + fi2)cos2^-i22cos2V'0] 

Ci   =   26£(&2sin2V>„-a2)cosV'o 

C2   =   62(62-a2)cos2^-(fc2-a2)2 

(506a) 

(506b) 

(506c) 

and are used to determine the locations of the non-central diffraction points. Now 

that the diffraction points have been found, it is easy to see that if | sint;nc| < 1 the 

observation point is in the caustic lit region and all other cases correspond to the 

caustic shadow region. Next, it is easily shown that 

sd0 = y/R2 + b2 + 2bRcosj)c (507) 

and 

scl = y/R2 + b2-2bRcosj>0 (508) 

are the distances from the central diffraction points to the observation point and 

(509) 

with 

y/(R2 + a2) - (26ÄcosV>„) sin*;nc + (62 - o2) sin2rr 

-1-1       ;if |sinrnc| < 1 
e, = 

—j       ; otherwise 
(510) 
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is the distances from the non-central diffraction points to the observation point. The 

curvature at any point on the edge of the disk is found to be 

a4b 
".(<?')   = [a4 + (62 - a2) xlf2 

ab 

[(osint;)2 + (6cost;)2] ' 

from (470). Evaluating (511) at Qco, Qc\ and Qnc we obtain 

b 

(511) 

«s(Qco) = «fl(<?cl) = a* 

and 

KgiQnc) = 
ab 

13/2 

(512) 

(513) 
[fc2 + (a2_62)sin2Vn(J 

respectively. Also, differentiating (511) four times with respect to sce, using (758) 

and (763) of Appendix D to convert the derivatives and evaluating them at Qco and 

Qd we get 

KI\Q*) = K?(QC1) 
Zb(a2-b2) 

a° 

and 

KfiQ*) = K?(Qcl) = 
456(a2-62)2 + 1263(a2-fc2) 

,10 

(514) 

(515) 

as the second and fourth derivatives of the curvature with respect to arc length. Using 

the fact that ß = ß' at the diffraction points, 

7T 
&o = &i = 2 (516) 

and 

sin/3nc == N 
(6 sin V'o)2 + (a2 — b2 sin2 if}'0J sin2 vnc 

62 + (a2-62)sin2t;nc 
(51?) 

are the oblique incidence angles at the diffraction points. The incident angles ^ and 

V'ci are 

#o = H (518) 

and 

V4 = 
«■ - i>'o      ; tf # < * 

3TT - #      ; if V-o > T 
(519) 
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respectively, at the central diffraction points and the incident angle ip'nc is determined 

using 
// -ttcos^ sinvnc ,      v 

COS V'nc =  / = \til\i) 
sin ßncyjb2 + (a2 - b2) sin unc 

at the non-central diffraction points.  The diffraction angles ^co and ^ei are found 

using 
fc+ficosV'o /R01N 

Costco =  (521) 
ScO 

and 
b-Rcosj>0 fK00, 

cos V>ci = ; i.0-" J 
3C1 

respectively, at the central diffraction points and the incident angle V>nc is found using 

ab- aRcosip0 sinvnc /KOO\ 
cos ipnc = , I0-" J 

anc sinßnc\jb2 + (a2 - 62) suTi;nc 

at the non-central diffraction points.  The caustic distances can now be determined 

using (10) of Chapter 2 and are given by 

AQco) = TJ^ ."?'"      „,,, (524) r v b {R cos tfJo + Sco cos % + b) 

fl2scl (525) 

and 
d/Q   \        " °ci  

PWel)     b(Rcosi>0 + sclcosj,'0-b) 

at the central diffraction points and 

ffc2 + (a2 - b2) sin2 vnc]  snc sin2 ßnc 

AQfc) = 2liP .  rr—• 77—^ (526) r v      '     a2b (R sin vnc cos V>0 + snc sin vnc cos ^o - °) 

at the non-central diffraction points.   Finally, it is necessary to determine the Ge- 

ometrical Optics (GO) field and the incident field at each of the diffraction points. 

The incident field at the observation point is 

x{u[&-*.]+U[^-&]} (527) 

which is determined using classical GO techniques and 

&   =   ir + ^-sin-^lsinV^ (528) 

&   =   x + ^ + sin-^lsin^J (529) 
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Figure 54: Incident and reflection shadow boundaries of an elliptic disk. 

axe the angles corresponding to the two incident shadow boundaries as shown in 

Figure 54. The incident wave polarization vectors ß'0 and i/}'0 must be transformed 

into the global polarization unit vectors s0, ß0 and ip0 as shown in Figure 55. Using 

the coordinate transformation 

ßo   =   ~ßo (530) 

$'0   =   ?erinty0-#) + &cos(ik-#) (531) 

it is found that 

E\P)   =   {soE^smWo-M-ßoEi + faE^cosfa-ti)} 

x ^R^o-M ju [^ _ ^J + u tyo _ ^] J (532) 

is the incident field at the observation point. Next, the reflected field at the observa- 

tion point is 

W{P) = {ßr Ei>RB + & E^RH) e^K-^+^U [y,0 _ £] U [f4 - i>0]        (533) 
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Figure 55: Polarization unit vector definition for the incident and reflected fields in 
the presence of an elliptic disk. 
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where the reflection coefficients are Rs^ = Tl and 

^3   =   v-j/o- sin-1 I — sin i>'0 j (534) 

^4   =   ir - ft + sin-1 / - sin ft j (535) 

are the angles corresponding to the two reflection shadow boundaries as shown in 

Figure 54. The reflected wave polarization vectors ßT and ij)T must be transformed 

into the global polarization unit vectors a0, ß0 and ft as shown in Figure 55. Using 

the coordinate transformation 

ßr   =   ~ßo (536) 

ft   =   s0sin(ft + ft) + ftcos(ft + ft) (537) 

it is found that 

Er(P)   =   {s0Elsm(r!;0 + 1>'0) + ß0Ei+$0ElcoS(Tpo + j,'0)} 

x ejkRcos«>°+M U [ft - ft] U [ft - ft] (538) 

is the reflected field at the observation point. The GO field at the observation point 

is the sum of the incident field and the reflected field at the observation point. The 

diffracted field can now be determined using the diffraction parameters found previ- 

ously. 

The incident field at each diffraction point and polarization vectors are required 

to determine the diffracted field near the caustic. The incident field at the central 

diffraction points are 

#Wd>) = {ßoEi + ^£;o}e-*6c08^ (539) 

at Qco and 

&(Qa) = {ßo Eß. + ft<} «**"■* (540) 

at Qcl. The incident wave polarization unit vectors at the two central diffraction 

points are /%, = ß'0 and ft = ft at Q^, and ß'cl = -ß'D and ft = -ft at Qcl. 

These polarization unit vectors are shown in Figure 56.   Also, the diffracted field 
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Figure 56: Polarization unit vector definition for the fields diffracted by an elliptic 
disk. 

polarization unit vectors are transformed to the global polarization unit vectors s0, 

ß0 and $0 using 

S&   =   s0 cos(V>co - V'o) + $o sin^co - $0) 

ß*     =    ßo 

V»cO     =     -So sin(V>rf) - i>o) + i>o COS^cO - lj)0) 

(541) 

(542) 

(543) 

for the field diffracted from Qco and 

*ci   =   -s0 cos(V>ci + i>„) + V>o sin(V'ci + V»o) 

ßd   =   -ßo 

$cl    =   s0 sin(^ci + Ipo) + $o ««(V'cl + ip0) 

(544) 

(545) 

(546) 

for the field diffracted from Qc\. These polarization unit vectors are shown in Fig- 

ure 56. These vectors can be used in conjunction with the diffracted field parameters 

derived earlier in this subsection to obtain the expressions for the field diffracted from 

the central diffraction points. The only quantities remaining in these expressions are 
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the caustic correction transition functions.  The argument of the caustic correction 

transition functions of the field diffracted from Qco are 

6 = yf 2k [(sin Vnc + 1)6 COS ^ - *nc + *eo] 0-j3r)oir/4 

on the lit side of the caustic and 

6 = y/2k [(sin vnc + 1) 6 cos $'0 - snc + a*,] 0-JT)OT/4 

on the shadow side of the caustic where 

Vo 

(547) 

(548) 

(549) 
,**[pd(Qc 

The argument of the caustic correction transition functions of the field diffracted from 

Qc\ are 

,-J3TJIT/4 6 = Y/2A: [(sin r„c -1)6 cos ip'a - snc + scl] 

on the lit side of the caustic and 

6 = yj2k [(sin vnc -1)6 cos T/>'0 - snc + sci] 

on the shadow side of the caustic where 

Pd(Q, 

a-JmT/4 

Vi 
f AQ«) \ 

g \scl[p^Qcl) + scl}j 

(550) 

(551) 

(552) 
.*cl[pd(Qc 

The expressions derived in Chapter 7 can now be used to determine the field diffracted 

by the two central diffraction points. 

The field diffracted by the two non-central diffraction points must be determined. 

The incident field at the non-central diffraction points 

E\Qnc) = {ß'0E
{

ßo+i;'0 El} e*"»»*—* 

along with the incident wave polarization unit vectors 

2, _ ß'o (- a sin vnc) + ffi (6sin iß'0 cos vnc) 

sin ßncy/b2 + (a2 - b2) sin2 vnc 

?l     ^(-6sinV'oCOsi;nc) + ^(-asint;nc) 
ip = /   

sin ßncyjb2 + (a2 - 62) sin2 r^ 
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are necessary in determining the field diffracted by the non-central diffraction points. 

Finally, it is necessary to determine the uniform polarization vectors Bu(£) and ¥u(£) 

as given by (415) and (416) of Chapter 7, respectively. Since the non-central diffrac- 

tion points can coalesce to either Qco or Qci, we must refer these vectors to the 

appropriate point. First, if — 1 < sinrnc < 0 then the non-central diffraction points 

are closer to QCQ. Therefore, referring Bu(£) and *u(£) to Qa we obtain 

■Z ,*\ ~   J -s<*>a2sinvnccosu„cTnc(£0,f?o,2) 
Bu(f)   =   Sco < , 

[ s2
csin/3nc^/62 + (a2 - b2) sin2r„c 

b {a2 cos V'co + Scab sin2 V>co} cos vnc (sin vnc + 1) Tnc(£0j Vo, 4) 
+ 

+   A 

+ 

a2
c sin /3ncV

/&2 + (a2-fc2)sin2v« 

- g^ a sin pne Twe(£0, T/0, 0) 

a2
c sin ßrvc^b2 + (a2 - b2) sin2 z;nc 

a6 {sco cos V>co - 6} (sin vnc + l)2 Tne(£o, 7?0,4) 

s2
nc sin /9„c^2 + (°2 - &2) sin2 vnc 

- ggp 6 sin V^ cos vnc rnc(£0,7/0,2) 

s2
c sin ßnc\jb

2 + (a2 - b2) sin2 vnc 

i6 cos V>co — a2} cos r„c (sin 

*2c sin ß^y/V + iat-Wnifv* 

+    V'cO 

b sin V>co {^cofccos j)^ - a2} cos r^ (sin vne + 1) T^p, 770,4) .      .      . 

and 

ab sin -0co (sin vnc + 1) Tne(^0,7?0,2) 

snc smßncy/b2 + (a2 - b2) sin2 v„ 

5co 6 sin V'cO cos rnc rne(^o,Ty0,2) 

anc sin /3nc\/fc
2 + (a2 - b2) sin21;„ 

- Sco a sin wnc T^o, *?o,0) 

a™ sin ßncy/b2 + (a2 - b2) sin2 vnc 

a6 cos -0CO (sin r;ne + 1) Tnc((0, TJ0, 2) . .     . 

snc sin /?„cy fc2 + (a2 - b2) sin2 v„ 1 
respectively. The coordinate transformation in (541) through (543) is then used 

to transform this expression into the global coordinates So, ß0 and ij)0. Next, if 

0 < sin Vnc < 1 then the non-central diffraction points are closer to Qc\. Therefore, 
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referring Bu(£) and *u(£) to Qci we obtain 

- so. a2 sin v^ cos vnc Tnc{£u 7/1,2) 
B„(0   =   *ci 

+ 

+     ßcl 

+ 

s2
ncsmßncy/b2 + (a2-b2)sm2vnc 

6 {a2 cos V>ci + sclbsin2 V>cl} cos r„c (sin TJ„C - 1) T^fo, 7/1,4) 

s2
c sin ßncy/h2 + (a2 - 62) sin2 vr 

s2
cl asint;nerne(^i,7/i,0) 

*2
C sin /3„c7&2 + (a2-62)sin2t;nc 

at {5cl cos V'ci - &} (sin rnc - l)2 Tnc(£i, r/!, 4) 

+   &i 

*2
C sin /3ncV/62 + (a2-fe2)sin2i;„ 

32! 6 sin ?/>cl cos ?;nc Tne(£i, 7/1,2) 

32
c sin.ßnc^/b2 + (a2 - &2) sin2 vnc 

gi.ift,*)) 

and 

fcsinV>el {3C16COST/>C1 - o2}cosT;nc(sin7;nc - l)Tne(^i,./JL, v .      .     . 

*2
C sin /3„c^

2 + (a2-62)sin27;nc 

,T, f*\ ~    . - «6 sin V'ci (sin vnc - 1) T„c(£i,7/i, 2) I 
+    ßcl 

+   fei 

snc sin ßnc^b2 + (a2 - b2) sin2 v„ 

- sci b sin V>cl cos pne rne(£i, 771,2) 

snc sin ßnc\Jb2 + (o2 - 62) sin2 rnc 

SciasinVncTnc^i^ijO) 

-afecos7/;el (sint;ne - lJi^e(ft,iyi,Z) j ,g59^ 

snc sin/?„cy62 + (a2 - b2) sin21;„ 

- ab cos V>el (sin une - 1) Tnc{d ,771,2) 

snc smßncy/b2 + (a2 - b2) sin2 vn 

respectively. The coordinate transformation in (544) through (546) is then used to 

transform this expression into the global coordinates s0, ß0 and ij)0. These vectors 

along with the diffracted field parameters derive earlier in this subsection can now be 

used to calculate the field diffracted by the non-central diffraction points. 

2.2    Numerical Calculation of the Field Scattered by an El- 
liptic Disk 

The numerical calculation of the field expressions derived in Subsection 2.1 confirms 

the uniformity of the CC-UTD. This geometry is representative of a typical practical 
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problem. This subsection is devoted to the numerical calculation of the field scattered 

by an elliptic disk. 

The results generated in this subsection will be presented in terms of the scattered 

field. The field scattered by an object is given by 

E'(P) = E\P) - E\P) (560) 

where El{P) is the total electric field and E'(P) is the incident field. It is important 

to note that throughout this subsection, E'(P) is the incident field at the observation 

point in the absence of the object and not the incident field part of the GO field. 

Also, the scattered field components will be normalized using 

and 

(Tß'ß = ATR 

(T^'a = AirR 

<T$>$ = 4.TTR 

ßo-E'(P) 
ß'o • &(P) 

o-E°{P) 

K ■ &(P) 

$o-E*{P) 

(561) 

(562) 

(563) 

which axe consistent with the definition of the far-zone radar cross section.  These 

results are converted into units of decibels per square meter (dBsm) using 

o-(dBsm) = 101og10[o-] (564) 

since the expressions in (561) through (563) are power ratios multiplied by length 

squared. This subsection is a comparison of the CC-UTD, UTD and Moment Method 

solutions. The MM solution used to determine the scattered field is generated using 

a general program developed by Nehrbass, Gupta and Newman [37]. 

The first geometry considered here is the plane wave scattering by an elliptic disk 

with a = 3.0 m and b = 1.5 m. Also, the incidence angle is taken to be ij}'0 = 45° and 

the observation distance is R = 2.5 m. All of the calculations for this geometry are 

performed at a frequency of 300 MHz. 

It is easy to show that the ISB's for this geometry occur at ipi — 199.8959° and 

i>2 = 250.1041° using (528) and (529), respectively. Also, the RSB's for this geometry 
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occur at ^3 = 109.8959° and ^4 = 160.1041° using (534) and (535), respectively. 

The CB's for the elliptic disk occur when pd + a in the amplitude spreading factors 

approaches zero. Using this fact, the CB's of Quo are found using 

bsa cos i>'0 + bR cos V>0 + b2 - o2 = 0 (565) 

and the CB's of Qc\ are found using 

bscl cos tp'0 + bR cos V>0 - b2 + a2 = 0 (566) 

where each of these must be solved separately for cosV'o- For the geometry chosen 

here, the non-central diffraction points only coalesce at Q^. Therefore, using (565) 

we find that 

25 cos2 i)0 - 105 cos $0 + 64 = 0 (567) 

must be solved for cos ip0. Solving this equation, the valid root is cos V'CBO = .73985 

which results in CB's occurring at V'CBO = 42.2811°, 317.7189°. 

First, the scattered field comparison of the ß0 component is discussed. The CC- 

UTD, UTD and MM solutions are computed and shown in Figure 57. This component 

is discussed first because it is effected the least by slope diffraction and double diffrac- 

tion effects. It is seen from Figure 57 that the CC-UTD solution is not only bounded, 

but also smooth and continuous across the caustics. Also, the CC-UTD solution 

smoothly reduces to the classical UTD solution away from the caustics as expected. 

There is excellent agreement between the CC-UTD solution and the MM solution 

throughout the pattern. 

Next, the scattered field comparison of the s0 and ^>0 components are discussed. 

The CC-UTD, UTD and MM solutions are computed and shown in Figure 58 for the 

a0 component. First, the S"0 component shown in Figure 58 is highly dependent on 

slope diffraction near the incident and reflection shadow boundaries. Also, double 

diffraction plays an important role near grazing to the disk. However, these effects 

have been neglected in these calculations. The scattered field in the caustic regions 

is dominated by the coalescing diffraction points. This fact can be seen in Figure 58. 

The field predicted by the CC-UTD near the caustics is in excellent agreement with 
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Figure 57: Scattered field comparison of the ß0 component in the y-z plane of an 
elliptic disk with a = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 m and an 
incidence angle of ip'0 = 45° at a frequency of 300 MHz. 
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Figure 58: Scattered field comparison of the s0 component in the y-z plane of an 
elliptic disk with o = 3.0 m, 6 = 1.5 m, an observation distance of R = 2.5 m and an 
incidence angle of if>'0 = 45° at a frequency of 300 MHz. 
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Figure 59: Scattered field comparison of the -0O component in the y-z plane of an 
elliptic disk with a = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 m and an 
incidence angle of ij)'0 = 45° at a frequency of 300 MHz. 

the MM. Also, the CC-UTD solution smoothly reduces to the classical UTD solution 

away from the caustics. The inclusion of the slope diffraction terms would greatly 

improve the scattered field near the incident and reflection shadow boundaries. Also, 

the inclusion of the double diffraction terms would improve the scattered field near 

grazing angles. However, not including these terms is consistent with the assumptions 

of the classical UTD. Next, Figure 59 shows the ip0 component of the scattered field 

predicted using the CC-UTD, UTD and MM. Slope diffraction has little effect for 

this polarization, but double diffraction has a noticeable effect near grazing angles. 

However, the scattered field in the caustic regions is dominated by the coalescence 

of diffraction points. These effects can be seen from Figure 59. First, the CC- 

UTD solution is smooth and continuous across the incident and reflection shadow 

boundaries and in good agreement with the MM. Near the caustics, the CC-UTD 

solution is again smooth and continuous and in excellent agreement with the MM. 
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One of the advantages of ray optical solutions is the computational speed of these 

solutions. All three of these polarization components where run at the same time using 

the general MM program developed by Nehrbass, Gupta and Newman [37]. For this 

geometry, the MM solution was run on a Silicon Graphics Indigo/R4K workstation 

and required 2 hours, 27 minutes and 8.31 seconds to compute. However, these three 

scattered field components for the CC-UTD and UTD solutions were run concurrently 

on the same computer and required only 3.92 seconds to compute. This is a distinct 

improvement in computational efficiency. 

It is now of interest to study the effects of the different approximate solutions 

discussed in Section 5 of Chapter 7. For the sake of discussion, the first approx- 

imate solution discussed in Section 5 of Chapter 7 will be denoted by CC-UTDi. 

The CC-UTDi solution assumes that the edge is parabolic in shape near the cen- 

tral diffraction point. Also, the second approximate solution discussed in Section 5 

of Chapter 7 will be denoted by CC-UTD 2. This solution assumes that the main 

contribution to the diffracted field comes from two specific integrals and the rest are 

negligible. 

The CC-UTD, CC-UTDi, CC-UTD2 and MM solutions are compared in the y-z 

plane of an elliptic disk with a = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 

m and an incidence angle of ip'0 = 45° at a frequency of 300 MHz. The comparisons of 

these solutions for the S"0, ß0 and $0 components are shown in Figures 60, 61 and 62; 

respectively. As expected there is a negligible difference between the CC-UTD and 

CC-UTDi solutions. This is expected because the diffracted fields depend on the 

local geometry of the diffraction point. Therefore, the leading term of the Taylor 

series about the diffraction point accurately describes the edge and all others can be 

neglected. However, the difference between the CC-UTD and CC-UTD2 solutions is 

larger. This occurs because different contributions to the diffracted field have been 

neglected. These solutions differ very little in the caustic regions and are still in good 

agreement with the MM solution. 

Although Figures 60 though 62 show that these three approximate solutions agree 

very well with the MM solution, the differences between the CC-UTD, CC-UTDi and 
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Figure 60: Scattered field approximation comparison of the s0 component in the y-z 
plane of an elliptic disk with a = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 
m and an incidence angle of iß'0 = 45° at a frequency of 300 MHz. 

CC-UTD2 are of interest. To better illustrate this, the percent difference between 

these three solutions will be defined as 

P.= 
s0-{E'(P)-EZ(P)}\ 

U'o-E'(0) 
x 100% (568) 

for the s0 components, 

ß0.{E>(P)-E'a(P)}\ 

for the ß0 components and 

P^ = 

Ä-^'(o) 

ft.{i'(p)-j%(p)}| 

x 100% (569) 

Vo-^'(o) 
x 100% (570) 

for the -0O components. Also, E*(P) is the scattered field predicted by the CC-UTD 

solution, Ea(P) *s the approximate scattered field predicted by either the CC-UTDi or 

the CC-UTD2 solution and ^'(0) is the incident field at the origin. First, the percent 
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Figure 61: Scattered field approximation comparison of the ß0 component in the y-z 
plane of an elliptic disk with o = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 
m and an incidence angle of if>'0 - 45° at a frequency of 300 MHz. 

difference between the CC-UTD and CC-UTDi is shown in Figure 63. This figure 

shows that for the s0 and $0 components of the scattered field, these solutions differ 

by less than 0.4%. Also, this approximation only simplifies the field in the caustic 

shadow region for these components. Therefore, there is no difference between these 

solutions in the caustic lit region for these scattered field components. This figure 

also shows that for the ß0 component of the scattered field, these solutions differ by 

less than 0.5% in the caustic shadow region and 4% in the caustic lit region. In most 

cases of interest, these differences are negligible and this approximate solution should 

be used. Also, the percent difference between the CC-UTD and CC-UTD2 is shown 

in Figure 64. This figure shows that the difference between the CC-UTD solution and 

the CC-UTD2 is less than 8%. Although this difference is greater than that of the 

CC-UTDi solution, it is a much simpler solution to apply. Therefore, this solution 

should be used first and then refined later if the need arises. However, this solution 

should be accurate enough for most practical problems. 
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Figure 62: Scattered field approximation comparison of the ^>0 component in the y-z 
plane of an elliptic disk with a = 3.0 m, b = 1.5 m, an observation distance of R = 2.5 
m and an incidence angle of ip'0 = 45° at a frequency of 300 MHz. 

The next geometry considered here is the plane wave scattering by a circular disk 

with o = b = 2.5 m. Also, the incidence angle is taken to be i})'0 = 70° and the 

observation distance is R = 5.0 m. All of the calculations for this geometry are 

performed at a frequency of 300 MHz. This geometry is interesting in that a circular 

disk is a typical geometry studied using high frequency techniques. 

It is easy to show that the ISB's for this geometry occur at ipi = 221.9757° and 

j>2 = 278.0243° using (528) and (529), respectively. Also, the RSB's for this geometry 

occur at ^3 = 81.9757° and ^4 = 138.0243° using (534) and (535), respectively. The 

CB's of diffraction point <5co are found by solving (565) and are y>CB0 = 109.1656°, 

250.8344°. Similarly, the CB's of diffraction point Qa are found by solving (566) and 

are V>CBI = 116.4425°, 243.5575°. 

Again, the scattered field comparison of the ß0 component is discussed first because 

this component is effected the least by slope diffraction and double diffraction effects. 

The CC-UTD, UTD and MM solutions axe computed and shown in Figure 65. It is 

196 



03 
ü 
c 
05 

o)   4 
«4-1       ^ 
«4-1 
■ i—I 

O 

6^     O 

—1 1      1      1      1      1 1——1 1— -i—i—i 

—ps 
....... Pt 

Ff 
. 

v\ A . 

 7 v. 
--'    i                   1 

• 
• 

l 
:           • 

i i i i—i—i— 

1)1 

 i i iCi 

- 

90 180 

f0 (Degrees) 
270 360 

Figure 63: Percent scattered field difference between the CC-UTD and CC-UTDi 
solutions in the y-z plane of an elliptic disk with a = 3.0 m, 6 = 1.5 m, an observation 
distance of R = 2.5 m and an incidence angle of if>'0 = 45° at a frequency of 300 MHz. 
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Figure 64: Percent scattered field difference between the CC-UTD and CC-UTD2 

solutions in the y-z plane of an elliptic disk with a = 3.0 m, 6 = 1.5 m, an observation 
distance of R = 2.5 m and an incidence angle of ip'0 = 45° at a frequency of 300 MHz. 
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Figure 65: Scattered field comparison of the ß0 component in the y-z plane of a 
circular disk with a = b = 2.5 m, an observation distance of R = 5.0 m and an 
incidence angle of tp'0 = 70° at a frequency of 300 MHz. 
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Figure 66: Scattered field comparison of the s0 component in the y-z plane of a 
circular disk with a = b = 2.5 m, an observation distance of R = 5.0 m and an 
incidence angle of ij)'0 = 70° at a frequency of 300 MHz. 

seen from Figure 65 that the CC-UTD solution is not only bounded, but also smooth 

and continuous across the caustics. Also, the CC-UTD solution smoothly reduces 

to the classical UTD solution away from the caustics as expected. However, the 

scattered field in the caustic regions is about 3 dB below the result predicted using 

the Method of Moments. This can be attributed to the CB's of Q& and Qc\ being 

close together. In order to obtain a more accurate result, all four diffraction points 

should be accounted for in the uniform asymptotic expansion. This would result in a 

solution that contains Swallowtail integrals [38]. 

Next, the scattered field comparison of the s0 and ^>0 components are discussed. 

The CC-UTD, UTD and MM solutions are computed and shown in Figure 66 for 

the s0 component. First, the s0 component shown in Figure 66 is dependent on 

slope diffraction near the incident and reflection shadow boundaries. Also, double 

diffraction plays an important role near grazing to the disk. However, these effects 

have been neglected in these calculations. The scattered field in the caustic regions 
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Figure 67: Scattered field comparison of the V>0 component in the y-z plane of a 
circular disk with a = b = 2.5 m, an observation distance of R = 5.0 m and an 
incidence angle of ij)'0 = 70° at a frequency of 300 MHz. 

is dominated by the coalescing diffraction points. This fact can be seen in Figure 66. 

The field predicted by the CC-UTD near the caustics is in excellent agreement with 

the MM. Also, the CC-UTD solution smoothly reduces to the classical UTD solution 

away from the caustics. The inclusion of the slope diffraction terms would greatly 

improve the scattered field near the incident and reflection shadow boundaries. Also, 

the inclusion of the double diffraction terms would improve the scattered field near 

grazing angles. However, not including these terms is consistent with the assump- 

tions of the classical UTD. Next, Figure 67 shows the ^>0 component of the scattered 

field predicted using the CC-UTD, UTD and MM solutions. Slope diffraction has 

little effect for this polarization, but double diffraction has a noticeable effect near 

grazing angles. However, the scattered field in the caustic regions is dominated by 

the coalescence of diffraction points. These effects can be seen from Figure 67. First, 

the CC-UTD solution is smooth and continuous across the incident and reflection 

shadow boundaries and in good agreement with the MM! Near the caustics, the CC- 
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UTD solution is again smooth and continuous, but about 3 dB below the scattered 

field predicted by the Method of Moments. 

One of the advantages of ray optical solutions is the computational speed of these 

solutions. All three of these polarization components where run at the same time using 

the general MM program developed by Nehrbass, Gupta and Newman [37]. For this 

geometry, the MM solution was run on a Silicon Graphics Indigo/R4K workstation 

and required 2 hours, 7 minutes and 38.23 seconds to compute. However, these three 

scattered field components for the CC-UTD and UTD solutions were run concurrently 

on the same computer and required only 6.24 seconds to compute. This is a distinct 

improvement in computational efficiency. 
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SECTION 9 

Conclusion 

The high frequency electromagnetic field near the cusp of a caustic has been investi- 

gated. New caustic corrected UTD solutions have been developed to obtain fast and 

accurate results. These solutions also lead to valuable physical insight into the nature 

of the electromagnetic fields near the cusp. The Incremental Theory of Diffraction 

(ITD) has been used to obtain the ray optical solutions in this work. These solutions 

use the GO fields found using classical GO techniques and a caustic corrected UTD 

diffracted field is used to correct the GO fields. These solutions predict fields which 

are smooth and continuous through the diffracted field caustics and reduce to the 

classical UTD solution away from the caustics. 

A caustic corrected UTD solution for the radiation by a source on a flat plate is 

derived in Chapter 5. The CC-UTD diffracted field in the caustic lit region is found 

to be 

E\P)   ~   E\QC).D (Qc)yJpd(Qc) -£- 
_ —r. I  g—jkRnc 

+   £•($+) • D (Qtc)Jpd(Qnc) -g- 
—  T. I  g—jkRne 

+   E\Q-C) • D (QZcyP
d(Qnc) -£- (571) 

where the dyadic diffraction coefficients for the central and non-central diffraction 

points are 

I^(Qe) = -$'j>Dh(Qc)Tc{£,0) (572) 

and 

^(Snc) = -^ZMQnc)Tnctf,77,0), (573) 
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respectively. The diffraction coefficient Dh(Qe) is identical to the UTD half-plane 

diffraction coefficient for the hard polarization. Also, the caustic correction transi- 

tion functions Tc(£,0) and Tnc(£,7/,0) are defined in (655) and (656) of Appendix B, 

respectively. The CC-UTD diffracted field in the caustic shadow region is found to 

be 

-». —<? i  p-jkRc 

+   E\QC) • V (Qc) y/rtQe) — (574) 

where the dyadic diffraction coefficients at the central diffraction point are 

T?{Qc) = -$'$Dh{Qe)T.(tt0) (575) 

and 

V (Qc) = - V V VhiQc) T,(t, 2) . (576) 

The caustic correction transition functions Ta(£,0) and Ta(£,2) are defined in (674) of 

Appendix B. Also, Dh(Qc) is the UTD half-plane diffraction coefficient for the hard 

polarization and 

Vhm - 2jk l-i^-^(c?c)((^r?^)j 
+ ^(gc)sin2V>c-ic(Zc))} (577) 

is a curvature dependent diffraction coefficient. These equations can now be used to 

calculate the field on the both sides of the diffracted field caustic when the source is 

located on the face of the plate. 

Chapter 7 is a derivation of a CC-UTD solution for cases when the near-zone 

point is not located on the face of the plate. Although a complete CC-UTD solution 

is derived, it is shown that a very simple approximate solution is accurate enough 

for most practical problems. This approximate CC-UTD diffracted field solution is 

written as 

Ed{P)   ~   #(ge).D (Qc) 
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+ *iM'Dw-hzrfffite 
Pd(Qnc) 

Pd(Qnc) 

--jksr, 

B-Jk*r, 

\snc[pd{Qnc) + snc] +   E\Q-C) ■ D {Q-nc) 

in the caustic lit region, where 

^(Qc) « -ß'ßcDa(Qc)Tc(t,0) -$'i>cDh{Qc)Tc{W) 

is the dyadic diffraction coefficient for the central diffracted field and 

*«-> * -M{^|££*]}IW.)^.»'>) 

(578) 

(579) 

-4'fc ■ Dk(Qnc)TJi^,0) (580) 
^ncsin^,, 

is the dyadic diffraction coefficient for the non-central diffracted fields. This approx- 

imate CC-UTD diffracted field solution is written as 

=s. *w ~ *(w-^w.)J^b^ 
+   i'(Qc)-P (Qc) 

in the caustic shadow region, where 

Pd(Qc) \3/\-*sc 

.Sc[pd(Qc) + Sc] ] 

B?{QC) « -ß%Dt(Qc)Ts(i,0)-j;'$cDh(Qc)T,(Z,0) 

(581) 

(582) 

is the dyadic diffraction coefficient for the central diffracted field and 

x[C(Zc)-4^(Qc)]l>a(gc))T8U,2) 

x [C(y - 4«;(Qe)] Dh(gc)) T.(&2)       (583) 

is the dyadic diffraction coefficient for the curvature dependant central diffracted field. 

Again, D„,h{Qe) are the UTD half-plane diffraction coefficients. 
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There axe several restrictions on the use of the CC-UTD solutions. First, the edge 

of the flat plate must be symmetric about an axis and the source and observation 

points must lie in the plane of symmetry. This ensures that the diffraction points 

are symmetrically located. It is also important to note that the caustic boundaries 

should not be close to the incident or reflection shadow boundaries. The CC-UTD 

solutions begin to break down as these boundaries approach each other because only 

the diffracted field contribution of the ITD is integrated. In these cases, the PO 

integral minus its edge contribution can no longer be approximated by the GO field. 

These solutions have been applied to two different problems in order to show their 

accuracy and practicability. The first problem is the radiation by a short monopole 

mounted in the center of an elliptic disk. The directive gain of this antenna has 

been calculated using the CC-UTD, UTD and MM solutions. These patterns were 

compared and shown to be in good agreement. The other problem considered was the 

bistatic scattering by a plane wave incident on an elliptic disk. The bistatic scattering 

patterns have been generated using the CC-UTD, UTD and MM solutions. These 

scattering patterns were compared and shown to be in good agreement. 

Several generalizations of these results can be performed in future research endeav- 

ors. First, the coalescence of two diffraction points can be investigated using the ITD 

and the uniform asymptotic expansion of Chester, Friedman and Ursell [18]. Also, 

three unequally spaced and nearly coincident diffraction points can be investigated. 

This can be accomplished using the ITD and the uniform asymptotic expansions 

in [38, 39, 40, 41]. These expansions involve the Pearcey integral [42] and its deriva- 

tives. These functions can be computed using the small and large argument formulas 

found in [41, 43, 44, 45]. 
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Appendix A 

Auxiliary Integral Evaluation 

Three different auxiliary integrals are encountered in the evaluation of the incremental 

diffracted field as shown in Chapter 3. These integrals are identical to those defined 

by Michaeli in the appendix of [21, 22]. The closed form evaluation of these auxiliary 

integrals is performed in this appendix using the same procedure as the one described 

by Michaeli in [21, 22]. It is important to note that the purpose of Chapter 3 is to 

obtain an expression for the field diffracted by an infinitesimal length of the edge of 

a wedge. Therefore, the contribution from the lower limit of the auxiliary integrals is 

to be determined. To illustrate this fact, only the lower limit of these integrals will 

be displayed throughout this appendix. 

The first integral treated here as given by (46) of Chapter 3 is 

U^juiX^e^dX, (584) 
0 

where the integral representation of u(X, $') as given by (31) of Chapter 3 

u(X, i>') = ^f GHÜ) ^cos* di (585) 

and . . 

Gh(0 =       (L,   Kn) ,gx (586) 

is to be used here. The contour of integration in (585) is shown in Figure 68. To begin 

the evaluation of (584) we wish to perform the integration in X first because of its 

simplicity. However, care must be taken when interchanging the order of integration 

in (584). The order of integration can only be changed if the integral on X converges 
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Figure 68:   Contour of integration for the exact solution for the total field in the 
presence of a wedge. 
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Figure 69: Deformed contour of integration for the total field in the presence of a 
wedge. 

at X -> +00 for all ( on the contour of integration in the £ plane. This condition is 

not satisfied on the contour T. However, deforming the contour of integration from 

T to T' as shown in Figure 69 will ensure convergence. Figure 69 shows that several 

poles of the integrand are crossed when the contour of integration is deformed to V. 

Therefore, including the residue contributions from these poles, (585) becomes 

u(x,v)=A- /^(o^^+xy*0"6" (587) Zirjn J m 
r' 

where £m are the roots of 

cos (£-\ - cos (^-\ = 0 (588) 

in the interval 0 < £ro < ir. Substituting (587) into (584) we obtain an expression 

Ü! = / -A- / Gh(0 e^(CO6«+0 dtdX + Y, f Jx{eomim+QiX (589) 
J 2irjn J m J 2"KJ1 
0 r' 
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, Im£ 

I 
r' 

-7T 
^ 

7T Re£ 

Figure 70: Deformed contour of integration enclosed at infinity, 

which will allow us to interchange the order of integration 

Ul = 2^ 11Gh^ ei*(cos€+0 dXdi + YJ ei*(co8*m+C)<*X (590) 
r'  o 

Since the convergence of the integral is now ensured, the integration with respect to 

X is performed 

ffi = 

which results in 

-1 
27TO 

/   GH{() 

I cos£ + C 
r' 

giA-fcosf+C) dt + E 
—j gjXicostm+C) 

COS tm + ( 

Gh(t) <*£ + £ 

(591) 

(592) 
■J cos| + C * ' i^cos£m + C 

as the contribution from the edge. The remaining integral can be evaluated by enclos- 

ing the contour I" at infinity as shown in Figure 70. The Cauchy Residue Theorem 

can be applied by including the poles at £m and the additional pole at 

£p = COS   1(—() = 7T — COS   * £ = 7T — a 
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(594) 

enclosed by the contour of integration. To completely determine the pole at f = £p 

we must define cos-1 (. For any real (, 

a = cos^C = -Jin (c + V^-l) 

where the proper branch of the square root is 

-VC^T|      ;if C< -1 

j VF=i      ;if-i<C<i VC7ri = (595) 

v/^T ; if C > 1 

and the principal branch of ln(z) is used. That is ln(z) = ln|z| + j arg(z) where 0 < 

arg(z) < 7T. Now that the pole is completely defined, the evaluation of (592) can be 

completed. Using the Cauchy Residue Theorem including the indicated poles, (592) 

is 

* - ?^Tc + 7^GS(a) + E^ COS Zm+C 

j sin a G£(«) (596) 

where 

G*(«)   = 
iM*?) 

cos (*?)- cos (*) 

-1 
In 

(597) 

is a hard diffraction coefficient in the spectral domain.   This completes the closed 

form evaluation of the edge contribution of TJ\. 

The second integral as given by (47) of Chapter 3 is 

U2 = jdui^)eJXidX (598) 

where u(X,7Jj') is given by (585).   To make the differentiation with respect to X 

simpler, we recognize that this integral is easier to evaluate if we use integration-by- 
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parts. Using integration-by-parts, (598) becomes 

U2   =   u{X^')e^\o-Ju{X^')-^{e^)dX 
0 

=   -jt f u{X,j,')eiXC dX -u{W) (599) 
0 

where we recognize the integral as U\ and ( = cos a from (594). Therefore, we obtain 

U2 = -j cos aUr- u(0, V>') (600) 

where 

u(0,V>') = - (601) 
n 

from the eigenfunction solution in (30) of Chapter 3.    Thus, substituting (596) 

and (601) into (600) we arrive at 

U2 = - cot a G°h(a) - - (602) 
n 

where again G%(a) is a hard diffraction coefficient in the spectral domain. 

Finally, the third integral as given by (48) of Chapter 3 is 

0 T 

where u(X,ip') is given by (585). The evaluation of U3 begins with the evaluation of 

the derivative of u(X,tp') with respect to ip'. Again, we wish to use integration-by- 

parts to make the evaluation easier. Therefore if we recognize 

1  du{X,j>') 
dtp 2irjnX 

=x/{!o-tt)}"'1""«     (604) 
2irjnX 

where 
sin (*) 

0.(0 =       ,*  UJ
m (605) 

we obtain a form that can be integrated by parts. Using integration-by-parts, (604) 

becomes 

1  du{X,j>') 
X      dip' 
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JsmiGt(Z)e*Xc°stdt -1 
2itn 

(606) 

and it is important to recognize that the value of the integrand at ±x + joo is zero. 

Again, the contour of integration is deformed from T to I" to ensure convergence. 

Including the residue contributions from the poles that are crossed, 

1  du{X,j)') 

X      df 
-1 

2X71 
/sin£G,(0< jW cos £ <g 

Esin £m sin (^-)    .„     . 
(607) 

»       sm (£) 

which is now in a form that allows us to interchange the order of integration. Substi- 

tuting (607) into (603) we obtain 

-1 
U3   =   J^JsmtG.iOetx^^dtdX 

o r' 

+ 
m *        sm ft) 

(608) 

where by interchanging the order of integration 

-1 
i 
r'  o 

U3   =   ^J Jsm(G,(t)emcos*+°dXdt 
T' 

The integration with respect to X is performed, 

ft) 

(609) 
sin 

#3     = 
2irjn in J    cos £ + £ 

+ s 
-jsin£msin(£) 

« 

sin(^){cos£ro + C} 
gj'Xfcosfm+C) (610) 

resulting in 

sin£G.(£) 
tf + E- 

jsin^sin^) 

2XJTI ;   cos £ + C  ~* ' t? sin (^) { cos £m + C} 
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as the edge contribution of J73. Enclosing the contour at infinity as shown in Figure 70 

and using the Cauchy Residue Theorem, 

_     — j sin £m sin (&-) _      j sin £m sin (^ J 

sin(^){cos£„+<} 

=   ^(a) 

sin(*f){cos£m + C} 

(612) 

where 

<?.{«)   = 
-i*(fl 

cos(^)-cos(£) 

-1 
2n 

cot 
U-(a-f)\ 

— cot 
V-Ca + ^y 

2n 
(613) 

is a soft diffraction coefficient in the spectral domain. 

The expressions for U\, U2 and U3 obtained here are identical to those reported 

by Michaeli [21, 22]. It is seen that for all three integrals, the results are proportional 

to the soft and hard diffraction coefficients corresponding to the 0-face as expected. 
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Appendix B 

Uniform Asymptotic Expansions 
for Evaluating Integrals with 
Three Collinear and Equally 
Spaced Stationary Phase Points 

The problem of asymptotically evaluating an integral near a cusp requires a uniform 

asymptotic expansion for an integral with three coalescing stationary phase points. 

The method used here was first presented by Chester, Friedman and Ursell [18] who 

derived a uniform asymptotic expansion for a contour integral with two coalescing 

saddle points. This method was later extended by Bleistein [39] to include many 

saddle points and algebraic singularities. Later, Ursell [40] confirmed Bleistein's result 

with more mathematical rigor. Most recently, this method was studied by Martin [46] 

to accurately determine the regions of validity of these uniform asymptotic expansions. 

An expansion similar to the one derived here can be found in [47, 48] except only 

the leading term is retained there. Also, the arguments of certain quantities are left 

undefined. The expansion derived here retains the first two non-vanishing terms and 

completely defines all quantities. 

1    Canonical Integral Mapping 

Let us consider an integral of the form 

oo 

Im(K) = J{z- zcrg(z)e*Mdz (614) 
—oo 
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where g(z) is a smooth, slowly varying and even function of z about z = zc such 

that g(zc) ^ 0 and f(z) has three equally spaced, collinear stationary phase points at 

za = (~znc, zc, +znc) denned such that f\zs) = fm(zs) = 0. The subscripts c and nc 

are used to denote the central and non-central stationary phase points, respectively. 

It is also assumed that K is a large real number and m is a real and even integer 

greater then or equal to 0. 

This integral must be mapped to an integral with the simplest possible phase 

function that has the same critical point structure as the initial integral. We begin 

by making the substitution 

f{z) = F(t) = lit4 + 2Vat2 + b (615) 

where p = sgn{/IV(zc)} and 77 = sgn{/n(zc)}. It is clearly seen that F(t) has 

three equally spaced, collinear stationary phase points at i, = (—tnc,tc,-\-tnc) = 

(-y/-fiTja, 0, +^/-fii]a). 

The constants a and 6 must now be determined. To do so, we require that the 

stationary phase points in the t plane coalesce when the stationary phase points in 

the z plane coalesce. Therefore, if we map f{zs) —► F(ta) we get 

b = f(zc) (616) 

and 

a = ±y/\f(Znc) - f(zc)\ (617) 

where the sign of a must be determined. Two conditions must be satisfied in order to 

completely determine the sign of a. If fi and 77 have the same sign, f(z) has one real 

stationary phase point and two complex conjugate stationary phase points. Also, if 

fi and 77 have opposite signs, f(z) has three real stationary phase points. Enforcing 

these conditions on F(t) we find 

a = y/f(znc)-f(zc) • (618) 

To properly map (z - zc)
mg(z) to the t plane, we make the substitution 

dz [ z — zc G»w=*w!(^r f"9» 
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which results in the integral 
oo 

Im(K) = J tmGm{tyKF^dt (620) 

where Gm(t) is an analytic function of t.   Gm{t) must be expanded in a series to 

obtain a uniform asymptotic expansion of Im(K). 

2    A Uniform Asymptotic Expansion Using the 
Chester, Friedman and Ursell Technique 

Since Gm(t) is an analytic function, we can expand it in terms of the power series 

Gm{t)   =   f;(an + 6nf + cnt
2)(4^3 + 47/at)n 

n=0 

=   a0 + M + co*2+f;(an + M + cn<2)(4/xt3 + 47/at)" (621) 
n=l 

where an, bn and c„ must be determined. Substituting this into (620) we obtain 

Im{K)   ~   a0 j tme*KFWdt + b0j tm+1e^KF^dt + Co J t^2ePKF^dt 
—oo —oo —oo 

oo    „ 

+    / £K + M + cnt
2)(4/it

3 + ^at)nt^KF^dt (622) 

where the last term is the remainder of the asymptotic expansion and will be given 

by 

/Sir) = / EK + 6"' + Cn*2)(W3 + 4*a*)"t"e*F«Ä. (623) 
— OO 

If we now define the canonical integral as 
oo 

Jk(K) = j tke>KFUdt (624) 
— 00 

(622) is given by 

Im{K) ~ aoJm(K) + b0Jm+i{K) + coJm+2{K) + %{K). (625) 

We now want to reduce the canonical integral J*(ÜQ to a standard form. Making 

the variable substitutions 

-j2Krja 
( = <S-j2Kn 

j2K[f(znc) - f(zc)} ^~2"^4 (626) 
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and 

p = {2Kf'He-^l& (627) 

in (624) and deforming the contour of integration back to the real axis we obtain the 

integral 
e}Kf(zc) e/2     7 

AW = R2^57j/?e"i       iv- (628) 
—oo 

A Parabolic Cylinder function of order — v and argument £ is denned by [47, 48] 

D-v{i) = i{ü)Sp2,"le~ww?dp  ; Re {v) > °-       (629) 

The canonical integral in (628) can be written in terms of these Parabolic Cylinder 

functions. Rewriting (629) and solving for the integral we get 

L2"-1
e-K«+P2)2^ = 1+       ' ^ D_„(fl (630) 

(-1)2"-1 

which is of the same form as the canonical integral in (628).   Using this relation 

in (628) we get 

r (*±1) eJKfM e?/4 
Jk{K) =   {-j2Kfi)(^m  D-m& 

_      V^(fc + l)!!eW°)e^ 
" (k + i)2(*+D/»(-i2JsrA*)(*+i)/* D-mw (631) 

if Ä is even, and 

Jk(K) = 0 (632) 

if k is odd. The double factorial function in (631) is define as 

(k + 1)!! = 1 • 3 • 5 • ... • (* - 3) ■ (Jfe - 1) • (* + 1) (633) 

for even k greater than or equal to zero. 

From (621) we can solve for oo, b0 and Co by letting t = tB and solving the system 

of three equations. This results in the constants 

<*o = Gm(tc), (634) 

60 = 
G"(*"c) ~ g"Hnc) (635) 
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and 
Gm(tnc) + Gm{-tnc)-2Gm{tc) c_ = _^ = = — (636) 

which are in terms of the thxee quantities Gm(ia). To find Gm(t) from (619) we begin 

by differentiating both sides of (615) with respect to t to get 

dz _ F'jt) _ Afit3 + A-pat ,g37) 

dt~ P{z)~      /'(*)     ' 

This equation is not defined at the stationary phase points because we found zs and ts 

by requiring /'(z,) = 0 and Fx(ta) = 0, respectively. Using l'Hopital's rule on (637), 

it can be shown that 
(dz\       Ufit* + AVa (63g) 

\dt)   ~      /"(*)     ' 

Therefore, at t = tc and z = zc, 

2 
(dz\   _    47/a 4a 

>0. (639) 
"(*)      |/n(*)| 

Requiring that the path of integration at z = zc remains unchanged by the mapping 

(i.e., f > 0), 
(640) (dz\   _    I   4a 

[dt)c- V/n(*) 
which allows us to write 

Gm{tc) = g{*c) (S).fe 
z- zr (641) 

Using l'Hopital's rule to find the limit in (641), 

G»(*c) = g(zc) 

Similarly, at t = tnc and z = znc, 

(dz\m+1 

[dt)c 
= g{zc) 

Aa 

fu(zc) 

m+l 

(642) 

(dz\     _   —Srja 

) 
(643) 

where we must determine sgn{/n(znc)} to ensure the proper mapping. Expanding 

f(z) in a Taylor series around z = zc and differentiating twice with respect to z we 
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obtain three equations: 

/(*)   «   f(zc) + lfn(zc)(z-'zcr + ±r(zc)(z-zcy (644) 

f\Z)    »     /"(*)(*-*) + £/"(*)(* "*)» (645) 

/»(*)   »   /nW + j/"W(*-^. (646) 

Since f1(znc) = 0 we can evaluate (645) at 0 = 2nc and equate it to zero and get 

\fIV(zc)(znc-zcf^-Zr(zc). (647) 

Next, evaluating (646) at z = znc and substituting in (647) we arrive at 

fu(znc) « -2fu(zc). (648) 

Finally, we have found that 

Bgn {/»(*«)} = -ign {/"(*)} = -77, (649) 

and using this result in (643) we obtain 

(dzV %a n /ttl!n. 

Requiring that the path of integration at z = znc remains unchanged by the mapping 

(i-e-, t > 0),   
/iz\     _ I  /    8a      1 

which allows us to write 

(651) 

=     ^nc) ÄSK^er-     ™ 
This is the final item required for the uniform asymptotic expansion. 

The leading term of the uniform asymptotic expansion is found by substitut- 

ing (631), (634) and (642) into (625) such that 

anJ (K)   =   a(z) — (m+1)">KiW4JK/M a0Jm[X) 9{zc) jJjr/nW|(m+1)/2    m + 1    c e 

x {^m+1)/2e^/4
JD_(2^L)(0} (653) 
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where £ is defined in (626). Since m is an even integer that is greater than or equal 

to zero, m + 1 is an odd integer that is greater than or equal to one. From (632), 

Jk(K) = 0 for odd k; therefore, b0Jm+1{K) = 0. This means that the second term 

of the uniform asymptotic expansion is zero. This is a result of the fact that the 

stationary phase points are equally spaced. The third term in the uniform asymptotic 

expansion is determined by substituting (631), (636), (642) and (652) into (625) 

coJm+2{K)   =   g(zc) 
v^r (m + 1)!!   ,„(m+i)x/4 jKf(zc) 

l#/n(*c)|(m+1)/2    m+1 

*{^*(m-1,/a^/4*-m(o} 
+   2(znc-zcr9(znc) 4/ZSZ|e-^/V^^ 

ÜT/n(2nc) 

where f is again defined in (626).  The terms can now be regrouped and transition 

functions for the central and non-central stationary phase contributions defined as 

Tc((,m)   =   em+1)/2 e^D^p 

+ ^*(m-1)/2^4z>_m(0 (655) 

and 

respectively. Therefore, the uniform asymptotic expansion of Im(K) is 

T (K\   ~   n(z \ ^ (m + ^H ci"fm+1),r/4 c?KiMTAL m) Im{K)   ~   g{zc) lKfn{zc){{m+1)/2   m + 1   * *        ictt,m) 

e-iW4 e>Kf^Tnc(£,ri,m) 

(656) 

+   2 (znc - zc)
mg{Znc) 

2?r 

Kf"{znc) 

(657) 

The transition functions are used to correct the non-uniform stationary phase con- 

tributions from the central and non-central stationary phase points. The inclusion of 

these transition functions properly accounts for the three nearly coincident stationary 

phase points. 
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3    A Uniform Asymptotic Expansion Using the 
Classical Stationary Phase Technique 

One of the drawbacks of the expansion developed in Section 2 is that when the 

non-central stationary phase points are complex, g(z) may be an extremely difficult 

function to evaluate at the complex point z = znc. Therefore, it is advantageous to 

derive an alternate uniform asymptotic expansion in this region. As explained earlier, 

if fi and 77 both have the same sign, f(z) has one real stationary phase point and two 

complex conjugate stationary phase points. When this is the case, we can expand 

Gm(t) in a Maclaurin series around t = tc = 0. That is, let 

n=0       n' 

=   GS)(0) + G£)(0)t + iGS)(0)ta + f;^M*". (658) 

Substituting this into (620) we obtain 

OO 00 

Im{K)   ~   G£H0) f tme*KFit)& + <&H0) f *m+1*Km^ 
—00 —00 

OO 

+   \G%>(0) J tm+2e>KFMdt 
—00 

+     f^9SMJtm+neJKF(t)dt (659) 
n-3 _«, 

where the last term is the remainder of the asymptotic expansion and will be given 

by 

£{*) = £ ^P- 1 f^eWdt = £ &lJm+niK) (660) 
n=3        n"       J^ „=3       n- 

and Jk{K) is the canonical integral defined in (624). Since Jm+i(K) = 0 as explained 

in Section 2 we get 

UK) ~ G£\0)Jm(K) + I (?(„2)(0)Jm+2(ÜT) + I%K). (661) 

Also from Section 2, we recognize 

4a GLO)(0) = Gm(g=^c)^
m     =g(zc) 
m+l I2±i 

/nW 
(662) 
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and note that the leading two terms of this expansion are identical to the leading 

two terms of the expansion presented in Section 2 since ao = Gm{tc). Therefore, 

it remains to find G$(0)- Differentiating (619) twice with respect to t and using 

l'Hopital's rule, it can be shown that 

o2'c)-»-(*)(|)"+(»+-yw(|)"1(^)< 

+   m   1 + ("^MS 
m-1 '£zY 

+ (663) (•*iMt)I(S), ■ 
The differentials in (663) are determined by successively differentiating (615) with 

respect to t to get: 

f(z) = fit4 + 2r}at2 + b 

/nw(|)1+/lw(^)-1^+^ 

/^)(S^.)(|)($)+/-(.)(S).^ 

/^)fSV+v-w(S)f(§) 

(664) 

(665) 

(666) 

(667) 

i</ 

+/"(*) 

Evaluating (666) at z = zc and t = tc = 0, and recalling that f\zc) = 0 we find 

/"W 
(669) 

which is the same as (640) in Section 2.   Next, evaluating (667) at z = zc and 

t = tc = 0, and recalling that /J(2C) = fm{ze) = 0 we find 

(S).- (670) 
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Lastly, evaluating (668) at z = zc and t = tc = 0, and recalling that /'(zc) = 

/ra(zc) = 0and(670) we find 

(dz\   (£z\   =_6t__rizl (dzV 
\dt)M3)c     /"(*)     Af"{zc)\dt)c- W 

Therefore, substituting (669) through (671) into (663) we obtain 

GL2)(0)   =   9n(zc) 
4a 

m+3 
2 

/nw + g(*c) 
Aa    I  2    /3 + m 

x,   ■    -    .-)I_JL 
I       III2 Kf 

m 
f3|JT/n(^)l     */IV(*c)l (672) 

where £ is defined in (626). Finally, substituting (631), (662) and (672) into (661) 

and simplifying, the uniform asymptotic expansion of Im(K) is 

Im(K)   ~   q(zr) — (m + 1)- eW(«+i)*/4 gJif/(*«)T tf ml 
M   j        5l c; |ü:/»(ZC)|('"+I)/2   m + 1 M*>™; 

+   Q "(.)     V^t™ + 1)!!      ir,(m+3)ff/4 jKf(zc)T ft m + 2) 
9  { c) 2\Kf"(zc)\(

m+3)/2 is^,m + Z) 

2|jr/»(*)|(" 

x {3|^(Zc)l " ^y^ >T'&m + 2) + J-(ii:)      (673) 

where the transition function is defined as 

rn(*)J' 

T.&*) = ^+1)/2e«2/4JD_(i±i)(0 (674) 

with £ being given in (626). It is important to recall that this asymptotic expansion 

is valid only if f(z) has one real stationary phase point and two complex conjugate 

stationary phase points (i.e., fi = rj). Again, the transition function is used to cor- 

rect the non-uniform stationary phase contributions when the three stationary phase 

points are nearly coincident. 

4    Verification of Uniformity 

In order to show the results in Sections 2 and 3 are uniform, two things must be 

shown. First, it must be shown that the uniform asymptotic expansion in Section 2 
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and the uniform asymptotic expansion in Section 3 are approximately equal near the 

point where the three stationary phase points coalesce. Second, it must be shown 

that these asymptotic expansions give a bounded result near the point where the 

three stationary phase points coalesce. This includes the fact that in the limit as 

|/n(zc)| -* 0, both expansions must reduce to the known result for an integral with 

a third-order stationary phase point. 

It is a simple task to verify the first of these conditions. The first two terms of 

each expansion are identical since o0 = G$(0) and the second term in each expansion 

is zero as pointed out in Section 3. Therefore, it remains to be shown that the third 

term of each expansion is approximately equal when znc « zc. To show this, we 

recognize that in the limit as znc -> zc the constant CQ in (636) is proportional to the 

limit form of the second derivative of Gm(t). More specifically, 

co « \ <?L2)(0) (675) 

for znc « zc. It is now easy to see that this agrees with the third term in the Maclaurin 

expansion of Gm(t) used in Section 3. Therefore, if znc « zc the uniform asymptotic 

expansion developed in Section 2 reduces to the uniform asymptotic expansion devel- 

oped in Section 3. 

The expansion in Section 3 must be bounded for znc « zc to verify the second 

condition. We must determine the small argument form of the argument of these 

transition functions since the transition functions are used to correct for the nearly 

coincident stationary phase points. We begin by evaluating (644) at z = znc and 

recombining terms to obtain 

f(znc) ~ /(*) W ^/ IV(*c)(*nc - *c)4 + \f l\Zc){znc ~ Zcf (676) 

for Znc « Zc- Next, since f\zne) = 0, we evaluate (645) at z = znc and equate it to 

zero to obtain 

^-^"TS? (677) 
which is substituted into (676) to get 

i/M-/wi«iPä!-        (678> 
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Finally, substituting (678) into (626) we end up with 

£« |jST/n(zc)|. /       3 *H"-*i)*/* (679) 

4 
^(k+i^/8 

l#/IV(*c)l 
which is the small argument form of the argument of the transition functions. This 

result is identical to the transition function argument used in [12]. 

The transition function in (674) can be approximated now that an approximation 

of £ has been obtained for fu(zc) —» 0. An approximate form of the transition 

function is found by substituting (679) into (674) 

xc-w(*+i)*/4 e?/4 D_^{() (680) 

where the approximate form of £ given by (679) is to be used in this equation. This 

result can also be used to show 

\ 1^  -irrwr0, (68) 

which implies that the last term in (673) corrects for the slope near the point of 

coalescence. Using this fact and the approximate form of the transition function 

given by (680), (673) can be approximated for small £ as 

Im(K)     ~    glzjyfaljl+m 
771+1 

m+l 
4 

+ i   LI#/IV(*c)l 
^n{m+l)ic/S 

+   JBWi/j(» + l)!! 

x^W^D_(^(() 

3 4 
gj>(m+3)5r/8 

|*/IV(zC)|J 

Xei*/M ee2/4 £^(0 + /ä(JST) (682) 

which is valid for fll(zc) —> 0.  It is easy to see that for small £ this is a bounded 

result. Therefore, the final condition to be shown is that for £ = 0, this reduces to 

the known solution for an integral with a third-order stationary phase point. 

Referring to Appendix C, it is a simple task to show that 

ec/4D /WO = D /W0) =  V   ,L   N   . (683) 
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Therefore, substituting (683) into (682) we obtain 

V/2TT    (m + 1)!! 
Im(K)   ~   g(zc) 

m+l 
4 

r(ffljä) (m + l)  L2W1V(^)IJ 

+   9n(zc) 
s/i-K    (m + l)!! 

r(=£*) 2|#/IV(*c)|J 

m+3 
4 

XeJ>(m+3W8eiK/(Zc)+JH(^ (684) 

which is recognizable as the first two non-vanishing terms of the asymptotic expansion 

for an integral with a third-order stationary phase point. 
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Appendix C 

Parabolic Cylinder Functions 

An efficient means of calculating Parabolic Cylinder functions is required when ex- 

amining the field near the cusp of a caustic caused by the coalescence of three equally 

spaced diffraction points. This appendix contains definitions, a series formula, large 

argument formulas, relationships between certain orders of Parabolic Cylinder func- 

tions and modified Bessel functions and other useful properties. 

A Parabolic Cylinder function can be defined as the solution of the difFerential 

equation 

£-(°+T)U=0 (685) 

which has four linearly dependent solutions 

u = ZL(a+1/2)(z),  £L(a+i/2)(-.z),  D{a_l/2)(jz), D(a.1/2)(-jz)        (686) 

as defined in [49]. The standard solution used here is taken to be the first of these 

which has an integral form [47, 48, 49, 50] 

Z>_(a+1/2)(z)   =   i4_^ *(■-!/*) e-**-* «ft (687) 
V 2/  ° 

=      Y'\ Jt2ae-^+t^2dt (688) 

for Re la + |j > 0. It is easily seen from the integral form of the solution that 

Parabolic Cylinder functions contain the proper form to be used in the study of the 

field near the cusp of a caustic caused by the coalescence of three equally spaced 

diffraction points. 
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From [50] the series form of the Parabolic Cylinder function is 

*-<■+v> W = 2(2a+1)/^(a^) *<*'a) - 2(fc-4(Mi) V2{z>a)      (689) 

where 
z2n 

yi(z,a) = E^„7^TT (690) 
„=o       \zn)- 

and 

^..^El^^— (691) 

are two auxiliary power series. The coefficients of yi(z,a) and y2(z,a) can be calcu- 

lated recursively using 

Ac   =   1 (692) 

A2   =   a (693) 
.         r (2n - 2)(2n - 3)   . f(iQA, 

A2n   =   aA2n-2 + ~ j LA2n-4 (694) 

and 

Bi   =   1 (695) 

B3   =   a (696) 
(2n - lX2n - 2) 

4 02n+l     =     aö2n-l +  ; &2n-3, \PV () 

respectively. A useful quantity that can be obtained from this series is 

ß-<««/>>(°> = ÄF(Si) (698) 

for 2 = 0. Although this series is an exact solution, it becomes computationally inef- 

ficient if \z\ becomes large. Therefore, it is best used to calculate Parabolic Cylinder 

functions if \z\ is small. 

If \z\ is large, asymptotic expansions of the Parabolic Cylinder function can be 

used. From [49] with |z| > 1 and \z\ > \a + ||, the asymptotic series must be 

divided into three separate regions depending on the argument of z. Therefore, as 

given in [49] the asymptotic series of the Parabolic Cylinder functions are 

£-(a+i/2)(*) ~ e-*2/V(°+1/2) Sc(z, a) (699) 
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for |axg(*)| < ?, 

D-(a+i/2)(*)   ~   e^W"*™ Se(z,a) 

 T^TY c-^fc+1)*/a SH&--M Snc(z, a) (700) 

for f < arg(2;) < f and 

2?_(a+1/2)(z)   ~   e-2/42-(a+i/2)5c(25a) 

 7^^^2a+iyt/a^f**i''1/i)S1us{z1a) (701) 

for 2p < arg(z) < ^—. All three of these asymptotic formulas are written in terms of 

the two auxiliary asymptotic series 

corresponding to the central stationary phase point contribution and 

2n 

-Ä (2»)" *>" (703) 

corresponding to the non-central stationary phase point contributions.  These series 

contain the function 

(x)2n = * ■ (as + 1) • (a? + 2) •... • (as + 2n - 2) • (* + 2n - 1) (704) 

with (a;)o = 1 and the double factorial function defined in [33] 

(2n)H = 2 • 4 • 6 •... • (2n - 2) ■ (2n) (705) 

with (0)!! = 1.   These asymptotic series can now be used to calculate Parabolic 

Cylinder functions with large arguments. 

The relationship between modified Bessel functions and certain Parabolic Cylinder 

functions may be useful due to the abundance of computer subroutines for accurately 

calculating modified Bessel functions. In particular, the Parabolic Cylinder function 

can be written in terms of modified Bessel functions [50] for integer values of a. 

Therefore, for a = 0 and |arg(.z)| < |, 

*>-vM = y[^K1/4 Q*2) (706) 
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and 

*-»/»(-*) - i/f [^«. &)+;*v (r2)]       (707) 

where I^{x) and üT^(i) are modified Bessel functions of the first and second kind of 

order fi and argument x, respectively. For computational purposes, if \z\ « 0, 

j)_ . (o) = —^*_ = 1.216280215 (708) 
'v     2V4r (|) 

can be used. Also, for a = 1 and |arg(z)| < f, 

D-*lM = ^ [^3/4 Q*2) - *1/4 Q*2)] (709) 

and 

!>-»/»(-*)   =   »v^l^Q^+Ii/«^)] 
+ ^Mi^+M?*)]}       <no) 

where the modified Bessel functions are defined as before. Again, for computational 

purposes, if \z\ « 0, 

£-3/2(0) = ^^y = 1.162736634 (711) 

can be used. The recursion relation [49] 

DM = V^iDu+l{z)" ^Ti2Wz) (712) 

should be used to obtain all other Parabolic Cylinder functions with orders that are 

integer multiples of these in order to reduce the computation time. It is important to 

note that this recursion relation is valid for all Parabolic Cylinder functions regardless 

of order or argument. Another important property that can be exploited in the 

computation of Parabolic Cylinder functions is 

D„0O = Dl(z) (713) 

which can be used to limit the scope of computations. 

As examples, two Parabolic Cylinder functions of different order are presented. 

These correspond to those required for the uniform asymptotic expansion developed 
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Figure 71: This is a plot of a Parabolic Cylinder function of order — 0.5 (i.e., a = 0) 
and argument z = te^4. 

in Appendix B. Parabolic Cylinder functions of argument z = te**/4 and orders 

— | and — | are shown in Figures 71 and 72, respectively. It is important to note 

that all the Parabolic Cylinder functions required for the calculation of the transition 

functions in Appendix B can be obtained from these. These two results can be used 

in conjunction with the recursion relation in (712) to obtain the necessary order since 

the orders of all the Parabolic Cylinder functions are integer multiples of — |. Also, 

the conjugate relation in (713) can be used to obtain the proper argument since the 

argument of transition functions are restricted to arg(£) = ±j,±^p. 
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Q' 

Figure 72: This is a plot of a Parabolic Cylinder function of order — 1.5 (i.e., a = 1) 
and argument z = ieJir^4. 
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Appendix D 

The Geometrie Interpretation of 
the Phase Function, Diffraction 
Parameter and Half-Plane 
Diffraction Coefficient Derivatives 
Required for the Uniform 
Asymptotic Expansion of the 
Diffracted Field Integral 
Equations 

Any asymptotic expansion depends on the derivatives of the phase and amplitude 

functions of the initial integral. These derivatives can be performed on an integral 

obtained for a specific problem, but they may be difficult to write in a geometry 

independent form. To alleviate this problem, these derivatives can be performed 

on general expressions using differential geometry. This appendix is devoted to the 

differentiation of the phase function, diffraction parameters and half-plane diffraction 

coefficients required for the use of the uniform asymptotic expansions derived in 

Appendix B. 
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1    Phase Function Derivatives 

The first few derivatives of the phase function are required for both of the uniform 

asymptotic expansions of Sections 2 and 3. The second derivative of the phase func- 

tion evaluated at the central and non-central stationary phase points are required for 

the expansion in Section 2. The second and fourth derivatives of the phase function 

evaluated at the central stationary phase point are required for the expansion in Sec- 

tion 3. This section is a derivation of the second and fourth derivatives of the phase 

function evaluated at the central stationary phase point and the second derivative 

of the phase function evaluated at the non-central stationary phase points. This is 

accomplished using differential geometry. 

This derivation begins by writing the phase function in terms of some geometric 

parameters of the edge. This geometry is shown in Figure 73 and I is defined as the 

arc length along the edge from the origin to the diffraction point Q'. It should also 

be noted at this point that all derivatives in this section are performed with respect 

to arc length unless stated otherwise. The phase function of the diffraction integrals 

is 

where, 

h(l) = -ri(Q')-rd{Q') (714) 

rUQ')   =   {[£ + re(Q')] • b}2 + {[Mi + re{Q')] • W)}' 

+   {[Ri + re(Q')}-e(Q')}2 (715) 

and 

r2ÄQ') = {[& - ?.m] • *} + {[& - W)] • UQ')} 

+   {[Rä-re(Q')}-e(Q')Y • (716) 

The parameters that are a function of arc length will be denoted by Q' to obtain a 

result that is consistent with the UTD. This will allow us to evaluate the results at 

different diffraction points and easily distinguish between them. The phase function 

itself will be left as a function of arc length to be consistent with the integral equation 
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Source 

Figure 73: Geometric parameter definitions for the phase function derivatives of the 
diffraction integrals. 
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it came from. The chain rule will be used to differentiate these expressions; therefore, 

the derivatives of ne(Q'), e(Q') and fe(Q') are performed first. The derivatives of the 

unit vectors ne(Q') and e(Q') are known as the Serret-Frenet equations [51] and are 

el(Q') = ng(Q') ne(Q') (717a) 

nl{Q') = -K9{Q') HQ') (717b) 

where Kg(Q') is the curvature of the edge at a point, Q', of arc length I away from 

the origin. The first derivative of the position vector, re{Q'), from the origin to the 

diffraction point is 

W) = "W) (718) 

from the definition of the tangent vector e(Q'). By successively differentiating (718) 

and using the Serret-Frenet equations (717), we obtain the next five derivatives of the 

position vector as: 

rl\Q') = -e\Q') = -K9(Q') MQ') (719) 

rT(Q')   =   -^g(Q')ne(Q')-^(Q')nl(Q') 

=   -Kl
g(Q')ne(Q') + "l(Q')Z(Q') (720) 

cm = -<(<?') UQ') - «im «.'wo 
+2Kg(Q')Kg(Q') e(Q') + K]{Q') e\Q') 

=   - [<(<?') - KJW')] ne(Q') + 3K9{Q'Wg(Q') HQ')        (721) 

KV(Q')   =   -C(Q')MQ')-^Q')^(Q') + ZKl(Q'Wg(Q')ne{Q') 

^3
g(Q')nl(Q') + 3Wg(Q')}2e(Q') 

+ZKg(Q')Kg\Q') HQ') + 3Kg(Q'Wg(Q') e\Q') 

=   [e^QXtc?') - *?(<¥)] ne(Q') 

+ [4«a(g')<(e0 - *J(Q') + 3{^(Q')}2] HQ') (722) 

C(Q')   =   -^g^Q')MQ')-^\Qlnl(Q') + 4nl(Q')Kg\Q')HQ') 
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+4Kg(Q')K™(Q') e(Q') + 4Kg(Q')K?(Q') e\Q') 

+12ng(Q')Wg(Q')}2ne(Q') + 6/#<?')<(<?') MQ') 

-ng(Q') e\Q') + 6Kg(Q')K?(Q') e(Q') + Z{ng(Q')}2e\Q') 

=   [lO/#£?')<(<?') - K5
g(Q') - K"(Q>) + 15ng(Q'){Kg(Q')y] ne(Q') 

+ [SKÄQ'KW) + lOKg(Q')Kg\Q') 

- 10Kg(Q')Kg(Q'j\ e(Q') (723) 

Next, we wish, to evaluate these derivatives at the central and non-central diffraction 

points. The central diffraction point, Qc, is located at the origin of the coordinate 

system shown in Figure 73. Also, ng(Qc) = Kg
ll(Qc) = 0 due to the symmetry of the 

assumed geometry. Therefore, the derivatives of the position vector evaluated at the 

central diffraction point are: 

re{Qc) = 0 (724a) 

rliQc) = -e(Qc) (724b) 

Wc) = -Kg(Qc)MQc) (724c) 

??\Qc) = n%Qc)e(Qc) (724d) 

?r(Qc) = ~ [<(<?c) - K3
g(Qc)] ne{Qc) (724e) 

re
V(Qc) = ~ [K9{QC) - 4K9(QCK(QC)] e (Qc) (724f) 

KV1(Qc) = - [K?(QC) - 10Ka
a{Qe)K?{Qe) + K5

g(Qcj\ ne(Qc) (724g) 

The non-central diffraction points, Q„c, are assumed here to be located at an arc 

length of I = lnc from the origin of the coordinate system. Therefore, the derivatives 

of the position vector evaluated at the non-central diffraction points are: 

WQ«c)   =   -e(Qnc) (725a) 

??(Qnc)   =   -Kg(Qnc)ne(Qnc) (725b) 

where only the first two derivatives are required by the uniform asymptotic expansion 

in Section 2. 

238 



The first derivative of r.-(Q') can now be derived by differentiating both sides 

of (715) with respect to arc length I as 

2r,(Q'hW)   =   2{[& + W0H}{W)-S} 
+ 2 {[Ä + f. wo] • W)} töW) • MQ') 

+ [Ä + f.W,)]-«.,(90} 
+ 2{[Ä + f. W)] • e(Q')}Wm ■ HQ') 

+ [Ri + Te(Q')].e\Q')} (726) 

where, by using (717) and simplifying, we obtain 

n(Q')r!(Q') = {[Ri + W)]-m?!(Q')-b} 

+  { [R,+ fe(Q')] • UQ')} m<T) • MQ')} 
+   {[£■ + fe(Q')] • e (Q')} {rl{Q') • HQ')} ■ (727) 

Following a similar procedure, the first derivative of r,i(Q') is 

rd{Q'Vd{Q')   -   -{[A-r.((y)].S}{^(Q')^} 
- {[Rd - fe(Q')] ■ UQ')} {rim ' W)} 
-{[Ä-fe(Q')]-?W}{W)-eW')}- (728) 

It is now a simple task to show that the first derivatives of r,-(#') and rd(Q') are 

rKQc) = rj We) = 0 (729) 

at the central diffraction point and 

r!(Qnc) = -cosß'nc (730) 

and 

rj(Qnc) = cos/3nc; (731) 

respectively, at the non-central diffraction points. 
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Next, the second derivative of r,W') is determined by differentiating both sides 

of (727) with respect to arc length, 

lr!(Q')}2   +   n W'h" WO = {W) • 6}2 + {[Mi + re{Q')} ■ %} {r?(Q') • *} 

+  {W) ■ MQ')}2 + {[Ä + UQ')} • KiQ')}tt1 WO • * W)} 

+ {[A + f. W)] •«. W')} {'"WO • «e WO + W) • «. W')} 
+   töWO • ?(Q')}2 + {[Ri+ W)] • e'WO} tö WO ' «W0> 

+ {[Mi + f.W')] ■ W)} {W) • W) + W) • ?I W0>    (732) 

where, using (717) and simplifying, we obtain 

hW)]2 + '.(WWO = ft WO -bf + KWO • UQ')}2 

+ {[Ä, + fe(Q')]-fc}{C(Q')-i} 
+ {[£• + fe w')] •«e WO} WW) •«e W0> 

+ {[Ä + Km]• HQ')} ttn WO ■ HQ')} - (733) 

Following a similar procedure, we obtain 

W WOf   +   rd{Q')rl\Q') = {r? WO ■ bf + {fJ(Q') • ne(Q')}2 

+   {^(Q')-e(Q')}2 

- {[Rä-re(Q')]-b}{f-(Q')^b} 

- {[Sa- W)] • «.(90}{'"WO • UQ')} 
- {[a, - fe(Q')] ■ e(Q')} {C(Q') • e (<?')} (734) 

as the second derivative TJ(Q') with respect to arc length. Evaluating (733) at the 

central diffraction point, 

_       1 _,r« i      \K-e{Qcf 1                    r~                i      \Ri-e(Qc)Y 
il(Qc) = ^ - *,{Qc) [Ri • «.We)] - [ ^- (735) 

where, for a plane wave incidence (i.e., Ri —+ oo) and Ri • ne(Qc) = cosip'c, 

r?(Qc) = -*»We) [Ä • MQc)] = -«»We) cos #. (736) 

240 



Also, evaluating (734) at the central diffraction point, 

1 r~ i      \Rd-e(Qc)]2 t      % 
rfiQc) = - + «»We) [Rd • fi. We) -I *—^ (737) 

and since Äj • ne(Qc) = — cosij}c and Rd • e(Qc) = 0, 

r?(Qc) = ±-Kg(Qc) cos1>c. (738) 

Evaluating (733) at the non-central diffraction points, 

rP(Qne) = 1 " «, W«) [?' • Ä. W~)l -  ^ ' ^"^ (739) 

where for a plane wave incidence (i.e., a,- —> oo) 

TftQnc) = -Kfl(<?„c) [?' • OeiQnc)] • (740) 

Also, evaluating (734) at the non-central diffraction points, 

' " W«) = — + «. W«) [? • «.(«nc)] - [?'g(Qwe)]8 (741) 

and since s • e(Qnc) = cos/3nc we get, 

T?(Qnc) = ^-^ + K9(Qnc) [? • «. W«)] • (742) 

This completes the derivation of the second derivatives. 

The third derivative of (715) is found by differentiating both sides of (733) with 

respect to arc length 

3r/W'KW)   + ri(Q')rr(Q') = z{^(Q').b}{f^Q').b} 

+ 2 {tftO • ne(Q')} irl\Q') ■ ne{Q') + fJ(Q') • nj W0> 

+ 2 {fJ(Q') • e (Q')} {'TWO • HQ') + W) • W)} 

+ {[^ + fe(Q')]-6}{^W)-fc} 

+ {*? WO • «.WO + [& + ?.W0] • fi.W)} {'TWO • ».WO) 
+   {[Ä + fe(g')] • MQ')} {'TWO • fi,W) + rl\Q') ■ %\{ff)} 

+ fc WO • s WO + [& + *W0] • W)} {'TWO ■ HQ')} 
+  {[£• + fe(Q0] • e(Q')}{ffW) • e WO 

-H? WO • e1 WO) (743) 
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which, using (717) and simplifying, results in 

&■/( WW)   +   r.< WW) = 3 {fj(g'). 1} {f »(<?') • 6} 

+ s{?l{Q')-ne{Q')}{?l\Q')-UQ')} 

+   {[Ri + K(Q')]-b}{f^(Q')-b} 

+ {[Mi + f.(<?')] • «.(#)} WW) • * W)} 

+   {[& + f.(<?0] • £(<?')} tfTW) • W)} • (744) 

Following a similar approach, the third derivative of Td(Q') is 

3ri(WW0   +   ^W>iII(Q') = 3{fe
I(Q')-i}{re

II(Q')^} 

+   3 {fJ(Q') • ne(<?')} { W) • UQ')} 

+   3{feW)-e(Q')}{^W)-«(Q')} 

- {[Rd-re(Q')].b}{f™(Q').b} 

- {[Md - fe(Q')] ■ «.(<?)} {r™(Q') • ne(Q')} 

- {[Ma-fe(Q')] • HQ')}{W) • W» (745) 

with respect to arc length.   Since we only need the third derivative of the phase 

function at the central diffraction point, 

rF(Qc) = r?{Qc) = 0 (746) 

which completes the required third derivatives. Now only the fourth derivative of the 

phase function must be found. 

Finally, the fourth derivative of (715) is found by differentiating both sides of (744) 

with respect to arc length 

3WW)]2   +   4r!(Q')rr(Q') + Ti(Q')rr(Q') = 

3 {rl\Q') ■ I}* + 4 {W) ' b} {Cm • 6} 

+   3 {fc"(Q') • ne{Q') + rHQ') • nJ(Q')} { W) • W)} 

+   3 {fJ(Q'). ne(Q')} {ff (<?') • MQ') + W) • K{Q')} 
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+   3 {f »WO • S WO + KV) ■ e\Q')} tt"WO • HQ')} 

+   3 tfj WO • e(Q')} {ff WO • e(Q') + i? WO • S1 WO} 

+   {[Ri+fe(Q')]-b}{fr(Q')-b\ 

+   {fJ(Q') • *. WO + [Ä + f.WO] • «JCQO} ft"W) • Ä. WO} 

+  {[£■ + f.wO]. 8. WO} tfT WO • W) + 'TWO • «.'(QO} 

+ fä WO • HQ') + [Ri + WO] • sxWO} ttniWO ■ e WO} 

+ {[& + f.WO] -?WO}{CWO^WO 

+fe
m WO • e1 WO} (747) 

where, after using (717) and simplifying, we obtain 

STOf   +   4r/(^hm(Q0 + n(Q0^IV(Q0 = 

3 {rT(O0 • b}2 + 4 {*? WO • b} (^ ■ *} 

+ 3 {r? wo • w»2+4 {fj(Qo • «. wo} w* wo • *e wo) 
+ 3 {fe"(QO • HQ')}2 + 4 töWO • s WO) W WO • e WO} 

+ {[£ + ?.WO]-SHC WO •*} 

+ {[Ä + f.WO] • «.WO} tfT WO •«.WO} 

+   {[£■ + f.WO] • e WO} {'TWO • * WO} • (748) 

Following a similar procedure on (745) we obtain 

swwof + 4rjwO'nso w wv wo = 
3 ft11 WO • *}2 + 4 {r? WO • b} {ff (QO • «} 

+ 3 {r?WO • «. WO}8 + 4 {i?wo' «-(«0} tf™WO • * WO} 

+   3{r?W0 ' W»' + 4{rlAQ') • e(QO} {'TWO ' W)} 

-     {[Ä,-feW0]-6}{^VW0-fe} 

- {[Äi - f. WO] • a.WO} {'TWO • «.(«0} 

- {[A - f.(O0] • W)} Kv WO • eWO} (749) 
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as the fourth derivative of Td(Q'). Again, we only need the fourth derivatives at the 

central diffraction point. Therefore, at the central diffraction point 

rr(Qc) = - [<(&) - *HQC)] [Ri • «.We)] - ^ - J: wm? 

=   - [<(<?c) - n3
g(Qc)} cos # - ^- [l + 3 cos2 #] 

where, for a plane wave incidence (i.e., J2,- —* oo) we get 

rr(Qc) = -[*?(Qc)-iHQc)]*»i/e. 

Also at the central diffraction point, 

r?(Qc)   =   K"(<?c) - 4(Qc)] [Rä • ne(Qc)] ~ ^ " " lr?(Qc)}2 

(750) 

(751) 

=   -[K^c)-«3(gc)]cos^_flWf) 

«c L«, 

1 -12 

 KgWcJcOS^, (752) 

This completes the required derivatives for the determination of the necessary phase 

derivatives. 

Finally, the derivatives of the phase function (714) can be determined using the 

derivatives of r*(Q') and rd{Q') evaluated at the diffraction points. First, the deriva- 

tives of the phase function at the central diffraction point located at I = lc are: 

h(lc)   =   -sc 

h\le)   =   0 

hU{le)     = + Kg(Qc)[cOSJ>c + COSJ>'c] 

1       1 
— + 
*c       Pd(Qc) 

h™(lc) 

h1V(lc)   =    [<(gc)-Ks
3(Qc)][coSVc + cos^] + ^^ 

+ Vs 1 
Sc COS lj}c 

l2 

PÄQc) J 
where the radius of curvature of the edge at the central diffraction point is 

1 
PÄQc) = 

Kg{Qc) 

(753a) 

(753b) 

(753c) 

(753d) 

(753e) 

(754) 
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and 
Dd,Q ) =      -pg(Qc) (755) 

is the second caustic distance of the central diffracted field. Also, the derivatives of 

the phase function at the non-central diffraction points are 

h(lnc)   =   -s'-fe(Qnc)-snc (756a) 

h1^)   =   cos#,c-cos/3nc = 0 (756b) 

inn   N   _   _sin2/3ne     [s-s']-ne(Qnc) 
k  {lnc)   " snc Pg{Qnc) 

sin2# 
1 

— + 
Snc       pd(Qnc) 

(756c) 

where 
d(      >_  pg{Qnc)sm ßnc (75?) 

is the second caustic distance of the non-central diffracted field. This completes the 

derivation of the phase function derivatives. 

It is advantageous at this point to derive the relationship between the derivatives 

with respect to I and the derivatives with respect to the x direction, xe. To accomplish 

this, we note that h(xe) = h(l) and successively differentiate with respect to xe on 

both sides to obtain: 

*■(-) - *■« (£) <758b> 

+*■(,) (£) <7«d) 

dl \ (£V\ 
dxl) 
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+hV) (g) (758e) 
3 '£V 

dxl *'(-)-*vw(£)+>«-*c)(s)( 

—«(3) (SH™ (a (a 
+*W (S) C™*> 

4™(-)-*"«(^)'+i«'(o(^)<(g 

—o (s) +«(a (s) 
3 

«(£) (S)(S)+-«> (3)' 

-"«(S)(g)+-a)(a(S) 
+*'(') (S) (758g) 

where the differentials must now be determined. To do so, we begin by determining 

the edge vector as 

e(Q') =  7~^' (759) 
v/i + W 

which allows us to take the dot product with x to obtain 

-z-e(Q')=    .    *        . (760) 
y/l + W 

Using this result and the definition of the first differential, we find 

tr^^-T^-y (761) 

This can now be successively differentiated to find the remaining differentials as 
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-fa?   ~      "'W'[S.S(QO]> ZK>{Q)p-HQ')T 

+«JW')I4:W') (762b) 

where the Serret-Frenet equations of (717) have been used to simplify the results. 

Although only the first three differentials are required to transform the phase function 

derivatives, the first six are required in Chapter 7. Therefore, differentiating (762b) 

three times with respect to xe we obtain 

dl 
dxe Qc 

1 (763a) 

cPl 
dxl 

Qc 

0 (763b) 

dH 
d^e Qc 

«JWe) (763c) 

d4l 
dxl 

Qc 

0 (763d) 

d5l 
dxl 

Qc 

4/cfl(Qc)/s W.) + 9*;we) (763e) 

d*l 
dx% 

Qc 

0 (763f) 

at the central diffraction point.    We can now substitute (753), (761) and (762) 

into (758) and evaluate at the central 

and non- central 

h(xt 

h\xt 

hll(x( 

hm(xt 

hlv(x, 

KXnc) 

hn(xnc) 

=   h(le) 

=   0 

=   &n(2c) 

=   0 

=   h™(lc) + AKl(Qc)h"(lc) 

h(lnc) 

0 

(764a) 

(764b) 

(764c) 

(764d) 

(764e) 

(765a) 

(765b) 

(765c) 

247 



diffraction points. One last result that will become useful for the uniform asymptotic 

expansion in Section 3 is the ratio of hIX(xc) to h
u(xc) is 

which can be used to convert the final result back to the derivatives with respect to 

arc length. 

2    Diffraction Parameter Derivatives 

The second derivative of the amplitude function of the integral is required in order to 

use the uniform asymptotic expansion developed in Section 3. This amplitude func- 

tion is dependant on the specific integral, but several quantities show up repeatedly. 

This section is a derivation of the first two derivatives of these common functions. 

An important fact that will be used extensively is that the first two derivatives 

of any function with respect to arc length are the same as the first two derivatives 

of that function with respect to xe at the central diffraction point. This was shown 

in Section 1 for the phase function, but it is true for any function. The equality 

of the derivatives with respect to arc length and xe will be stated without further 

explanation since all the derivatives obtained in this section are evaluated at the 

central diffraction point. 

First, if we recognize that r = rd(Q'), we obtain 

r\Qc   =   sc (767a) 

dr 

d?r 

dr 
dxe 

= 0 (767b) 

dP dxl 
= Kg{Qc) COS V>c (767c) 

Qc       Sc Qc 

from (729) and (738), respectively.   Next, we wish to determine the derivatives of 

sin ß and sin2 ß. To accomplish this we begin with 

cosß = rd(Q').e(Q') (768) 

which is a definition of cos ß. This can be rewritten as 

rd(Q') cos/? = fd(Q') • e(Q') = [& - fe(Q')] . e(Q') (769) 
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which allows us to differentiate using the chain rule to get 

rj(Q0 cos/3 + rd(Q') (~^J   =   [4 - ?.(<?)] • e\Q') " W) • W) 

= «„(go{ [A-f.(go] ■«.(<?')} 
-*W) • e (QO (770) 

where the Serret-Frenet equations of (717) have been used to simplify the result. 

Again, using the chain rule and the Serret-Frenet equations of (717), (770) is differ- 

entiated to obtain 

rJWJco.*   +   2ri(g')(^)+r^)(^) = 

=   K>(Q'){[Rd-re(Q')].ne(Q')} 

+   *«,(<?) {[&-f.(Q0]-«.W)} 

- C(Q') • e(Q') - W) • e\Q') 

=   K*g(Q'){[Rd-re(Q')].ne(Q')} 

- nl(Q'){[Rd-fe(Q')]-e(Q')} 

- r^Q')-e(Q')-Kg(Q'){n(Q')-ne(Q')} (771) 

which will be used to determine the second derivative of cos ß. Evaluating (769) 

through (771) at the central diffraction point, we get: 

cos/?|Qc   =   0 

dcosß 
dl 

tPcosß 

dcosß 

dl2 

dxe 

d? cos ß 

= Kg(Qc)cOS1pc 

(772a) 

(772b) 

Q= 
dxl 

= 0. (772c) 
Qc 

Using the trigonometric identity, sin2 ß = 1 — cos2 ß, we can differentiate twice 

<fsin2/3 
dl 

d?sm2ß 
dl2 

=   -2cos/3 
[    dl    ) 

fdcosßV 
V    dl    ) 

2cos/3 
'^cos/T 

dl2    , 

(773a) 

(773b) 
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and evaluate them at the central diffraction point to obtain 

sin' ß 
dsin2 ß 

dl 

(Psin2 ß 
dl2 

= 1 

dsin2ß 

Qc 

Qc 

dxe 

d?sm2ß 
Qc 

dxl 

= 0 

= -2 
1 -12 

 Kg(Qc) COS 1pc 

(774a) 

(774b) 

(774c) 

as the derivatives of sin2 ß. Also, differentiating sin2 ß using the chain rule 

dsin2/? 

dl 

<Psm2ß 

=   2 sin 

di2 \ di }       r \ di2 

and evaluate them at the central diffraction point to obtain 

(775a) 

(775b) 

sin/3|Qc   =   1 

d sin/3 
dl 

(Psinß 

dsmß 

dl2 

dxe 

d?smß 

= 0 

Qc 
dxl 

1 -12 

 Kg(Qc) COS -0c 

(776a) 

(776b) 

(776c) 

as the required derivatives of sin/3.  Following a similar procedure and recognizing 

cos/3' = Ti(Q') • e(Q') and Ri —► oo we obtain 

cos/3'|Qc 

dcosß' 

=   0 

d?cosß' 

d cos /3' 

and 

if2 

sin2/?' 

dsm2ß' 

dxe 
-Kff(Qc)cOsV'c 

Qc 

dx2
e 

= 0 

(777a) 

(777b) 

(777c) 
Qc 

dl 

cPsm2ß' 

dl2 

Qc 

Qc 

=   1 

dsin2/? 2 -0/ 

«fee 

^sin2^ 

= 0 

dx2
e 

-2 [«„(&) cos #] 

(778a) 

(778b) 

(778c) 
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which can be used to obtain 

smß'\Qc   =   1 

dsinß' 
dl 

d^sinß' 

dsinß' 

dl2 

dxe 

d^sinß' 

= 0 
Qc 

Qc 
dxl 

= -[Kg(Qc)cOSJ>'c) 
/i2 

(779a) 

(779b) 

(779c) 
Qc 

as the required derivatives of cos/3', sin2 ß' and sin/?' evaluated at the central diffrac- 

tion point. The only other common quantity of the amplitude functions are the half- 

plane diffraction coefficients. However, these will be determined in the next section 

due to the extensive nature of the differentiation of the diffraction coefficients. 

3    Half-Plane Diffraction Coefficient Derivatives 

Other common quantities that appears in the amplitude functions of the diffraction 

integrals are the half-plane diffraction coefficients. The edges are assumed to be on 

flat plates for the purposes of the work. Therefore, the second derivatives of the 

half-plane diffraction coefficients are required in order to use the uniform asymptotic 

expansion developed in Section 3 of Appendix B. This section is devoted to the 

differentiation of the half-plane diffraction coefficients. 

As discussed in Section 2, the first two derivatives with respect to arc length 

of any function is identical to the first two derivatives with respect to xe evaluated 

at the central diffraction point. This fact will be used here as well. The equality 

of the derivatives with respect to arc length and xe will be stated without further 

explanation since all of the derivatives determined in this section are evaluated at the 

central diffraction point. 

The diffraction integrals formulated in this work are obtained using the ITD as 

discussed in Chapter 4. For this reason, it will be necessary to differentiate the 

ITD half-plane diffraction coefficients rather than the UTD half-plane diffraction 

coefficients. First, recall that the ITD half-plane diffraction coefficients are 

F{kLa{V-)]     F [kLa(y+)] \ 
D.*m = it cos 

251 



= \ {sec (T) F [kLa(*~i\T sec (T) F [*io(t+)l}   (780) 

where 

L = rsin2ß (781) 

is the distance parameter and 

a(**) = 2cos2^ (782) 

is the angle parameter. This must now be differentiated twice in order to use the 

uniform asymptotic expansion derived in Section 3 of Appendix B. 

Extensive use of the chain rule is employed to accomplish this differentiation. The 

differentiation of $T = tp ^f tp' will be performed first. We can write cos^> as 

cos ib = ;—  (783) 
smp 

and it can be rewritten as 

rd(Q') sin ß cos ^ = - rd(Q') • ne(Q') = - [& - fe(Q')] • ne(Q') (784) 

which allows us to easily differentiate. Now, differentiating both side of (784) with 

respect to arc length we obtain 

rliff) sin ß cos V   +   rd(Q') ^^ cos V + rd(Q') sin ß {^^j = 

=   WOO • ne(Q')} ~ [Ä - W)] • KiQ') 

=   mQ')-ne{Q')} 

+   ng(Q') {[Rd-re(Q')].e(Q')} (785) 

where the Serret-Frenet equations of (717) were used to simplify this result which 

will be used to determine the first derivative of cos^. Next, differentiating both sides 

of (785) with respect to arc length we get 

r?(Q') sin ß cos V   +   2r *{ff) {^^j cos i> + 2rj(<?') sin ß (^*) + 

~    ,^ fdsinß\ fdcosib\ /„..{d2smß\        , ....  .   nfcPcosib\ **W) (-/j (-^) + r,«') ^^/J «. + + -,«?') Sm /J ^-^2J = 
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=   {W) • ne(Q')} + {fJ(Q') • fij(g')} 

+   K*(Q') {[Rd - re(Q')] • e(Q')} - ng(Q'){fj(Q'). e(Q')} 

+   Kg(Q'){[Rd-re(Q')]'e\Q')} 

= {W) • UQ')} + «;(<?') {[A - W)] ' 2(90} 

- ^(g'HWMW)} 

+ KjCQOdÄf-WOl-Mö')} (786) 

where the Serret-Frenet equations of (717) have been used to simplify this result which 

will be used to obtain the second derivative oicosip. Evaluating (784) through (786) 

at the central diffraction point we obtain 

COSV'IQ 

d cos ip 

dl 

d2 cos ip 

COS "0c 

d cos ip 

dl2 

Qc 

Qc 

dxe 

d? cos ip 

= 0 

dxl 

sin ipc cos ipc       sin ip{ 

Qc PliQc) 
+ 

pa(Qc) 

(787a) 

(787b) 

(787c) 

which will now be used to determine the derivatives of ip. Using the chain rule, cos ip 

can be differentiated as 

<£cos"0 

i£i - _«* Ä)'-^^) (788l) 

=   — sin ip 

which can be evaluated at the central diffraction point and (787) used to obtain 

+ Qc    =   & (789a) 

dip 

dl 

dip 

Qc    "     **. 
= 0 

Qc 

(789b) 

d?1p 

dl2 

d?ip 

Qc    '     d*l 

sin ipc cos ipc 

QC~        PliQc) 

sin ipc 

*c Pg{Qc) 
(789c) 

as the derivatives of ip.   Following a similar differentiation process as before and 

evaluating the derivatives at the central diffraction points 

1>'\Qc     =    1>'c (790a) 
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dy_ 
dl 

dl2 

dy_ 
dxe 

= 0 
Qc 

Qc 
dxl 

sin if>'c cos if)'c sin i/)'c 

PI{QC)       Ri PAQC) 

(790b) 

(790c) 

where for plane wave incidence (i.e., Ä,- —> oo) we obtain: 

v>' Qc    =   < (791a) 

dj>' 

Qc           dx' 

= 0 
Qc 

(791b) 

<«2 

d?f 

Qc     "       ** 

sin ^c cos V»c 

Qc'       ») 

(791c) 

Finally, using (789) and (791) in $T = V> T ^' and evaluating them at the central 

diffraction point we get 

ff*     =     »*        = V>cT# 

d$]_ 
dl 

dl2 

dV* dV* 
dl 

dl2 

Qc 
dxe 

= 0 

(792a) 

(792b) 
Qc 

d2^ 
dx2 

-{ 
sin ipc cos rj}c 

PKQC) 

Qc 

sin tj>c 

PAQC) 

\     Jsinj^cos^l rvwr)    (792c) 

as the required derivatives. Also, the distance parameter L = rsin2 ß can be differ- 

entiated using the results of Section 2 to obtain 

'dsin2ß' 

£-(£)*'H»(^
+
'(T) 

which is now evaluated at the central diffraction point and simplified to get 

iQc =     8C 

dL 
dl 

dL 

Qc           dx* Qc 

= 0 

d?L d*L 
dP dx2 

Qc                    e Qc 

-J. 1 
*2 

8C COS lf>c 

l     PÄQc) \ 
2 

4 
Sc COS V>c 

[     P9{QC) J 

(793a) 

(793b) 

(794a) 

(794b) 

(794c) 
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as the required derivatives.  The angle parameter a(*qF) = 2 cos2 ^—j can now be 

differentiated using the chain rule 

da(^) 
dl 

dl2 

• A^HTHT) (795a) 

:\2 

-1  cos(*T) 
( 

d9*\2 

dl 
(795b) 

which, at the central diffraction point gives 

«(*?)   =   2cos2^ 

dl 

da{9^) 

Qc 

dl2 

dxe 
= 0 

Qc 

dxl .-<*H3)-m) 

(796a) 

(796b) 

(796c) 

as the first two derivatives. We are now in a position to differentiate the argument of 

the Presnel transition function X* = feIo(*qF). Using the chain rule 

dX* . (dL\   __     ., (da{V*y 

dl 

<PX* 
dl2 

. 4(§)^)+«f I) 
dl    ) 

and evaluating these at the central diffraction point and simplifying 

(797a) 

(797b) 

X?   =   X* 

dXJ   _   dJF 
dl 

dl2 

Qc 
= 2ksccos2 

dX* 

dl 

d?X* 
Qc 

dl2 

=   2Xf 

dxe 

d?x* 

(?) 
= 0 

(798a) 

(798b) 

Qc 
dxl 

\2«; c  *2»l 
1- 

Qc 

Sc COS V>c 
-4i- 

8C COS if), 
l2 

PAQC) J    «2 L     P,{QC) J 

(798c) 

255 



which axe the derivatives of interest. Next, the differentiation of the Fresnel transition 

function FIX*] is to be determined. Using the chain rule 

dF[X*]     dX* dF[X*} 
dl dl      dX* 

(799) 

which is then differentiated again 

d?F[X*]     d*X* dF[X*] + m d?F[X* 
(800) 

dl2 dl2      dX*       \ dl J     dX*2 

where it is now necessary to determine the derivatives of the Fresnel transition func- 

tion with respect to its argument. To do so, we recall (6) from Chapter 2 

oo 

F[x] = 2jyfieix Je-jr2dT (801) 

which is the Fresnel transition function.   We must know how to differentiate the 

Fresnel integral in order to correctly differentiate the Fresnel transition function. 

Using the fact that [50] 

±Jf(t)dt = -f(p) (802) 
p 

and using the chain rule, the derivative of the Fresnel transition function is 

dF\x] 
dx 

=   2j 
B3X 

2yfi 

F[x) - Fs[x 
M + j</x~ejx\ J e~jr dr-j 

2x 
(803) 

with respect to its argument. The slope diffraction transition function is given by 

F.[x] = 2jx{l-F[z]}. (804) 

Finally, substituting (798) and (803) into (799) and (800) and evaluating them at the 

central diffraction point we obtain 

F[X?) 
dF[Xf] 

dl 

d^FlX?} 
dl2 

F[ksca(**)] 

dF[X*] 
dl 

dl2 

dF[X*] 
dxe 

= 0 

(805a) 

(805b) 

#F{X* 
dx2

e 
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1*1 
1- 

sc cos ipc 1   I" 8cCOSl}>c 

p9(Qc) j »i r  p.(Qc) 

-K^)tan(?)}{W]"F'ra} (805c) 

as the derivatives of the Fresnel transition function with respect to arc length. Now, 

differentiating the secant terms in the half-plane diffraction coefficients using the chain 

rule, 

dl 

^sec(f) 

(806a) 

dl2 

+   4 HT)>(^M¥) 
+ "*(T)} 

where evaluating these derivatives at the central diffraction point we get 

sec {T) 
dsecfjf) 

=   sec 

dl 

® 
dsec (^) 

dxP 
= 0 

(806b) 

(807a) 

(807b) 

*sec(*F) 
dl2 

*«*(«*) 

dx2 

=   sec (?)ßGFM?)}    (80?c) 
which finally allows us to differentiate the half-plane diffraction coefficients using the 

chain rule. 

We are in a position to differentiate the ITD half-plane diffraction coefficients 

in (780) since we have differentiated the secant terms and the Fresnel transition 

functions with respect to arc length. Using the chain rule, 

dl 
l 
2 dl 

dsec (*f) 
(808) 
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is the first derivative and 

dl2 
1 
2 

^sec(^) 

dl2 

-f-sec (?) 

F[X~] + 2 

cPF[X-} 
dl2 

^sec(^) dF[X~] 

dl dl 

+ 2^(¥)gg!] 
iZ <fZ m dl2 (809) 

is the second derivative of the ITD half-plane diffraction coefficients with respect to 

arc length. In order to place the final result in terms of auxiliary half-plane diffraction 

coefficients that have the same form as the UTD half-plane diffraction coefficients, 

let: 

D,h(Q')\Qc 

dDs,h{Qc)   _   -e~j*'4   dD,,h(Q') 
dl 

fD.dQc) 

yftorit dl Qc 

(810a) 

(810b) 

(810c) 
dl2 v^Ä dl2 

Therefore, substituting (805) and (807) into (810) and simplifying, we obtain 

dP.AQc) = dD,,h(Qc) = 0 

dl dxe 

and 

. COS 1pc 

dl2 dxl 

-   nW =   D%{Qe) + Wc I       P9 
J_ I Sc COS lj}c 

We) 

[D.Mc) - D%\QC)] (812) 
PÄQc) 

as the first two derivatives of the half-plane diffraction coefficients with respect to arc 

length evaluated at the central diffraction point. We note that 

D'AQc) ~ 2V^k \    cos(^)     T    cos(^)    j 
(813) 
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are the typical UTD half-plane diffraction coefficients for normal incidence.  There 

are also two auxiliary half-plane diffraction coefficients 

1 /d2*: _e-J>/4 

^WJ ■ 'im dl2 tan 
*£\1  F,[ksca(*;)} 

. 2 )\      cos (21) 

2 \dP )       \2 )\      cos(^)    J 

and 

^^-W^ri    _(<£)     T    cos(Si)    J 2v27rfc  |     cos 

which appear in (812), where $ J = V'c T V'c a^d 

a(**) = 2cos2^). 

Also, the slope diffraction transition function is defined as 

Fa[x] = 2jx{l-F[x]} 

and the second derivative of $T with respect to arc length is 

d2 $ J       ( sin V>c cos V'c        sia V'c -I ^2 I      tfWe) ScP9(Qc) 

evaluated at the central diffraction point as given by (792) 

(814) 

(815) 

(816) 

(817) 

MnSS*}    (818) 
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